logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  : , : , :
1reference24  ⊢  
2theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int
3instantiation4, 5, 6  ⊢  
  :
4theorem  ⊢  
 proveit.numbers.number_sets.integers.pos_int_is_natural_pos
5instantiation24, 7, 15  ⊢  
  : , : , :
6instantiation8, 9, 10  ⊢  
  : , : , :
7instantiation11, 13, 14  ⊢  
  : , :
8theorem  ⊢  
 proveit.numbers.ordering.transitivity_less_less_eq
9theorem  ⊢  
 proveit.numbers.numerals.decimals.less_0_1
10instantiation12, 13, 14, 15  ⊢  
  : , : , :
11theorem  ⊢  
 proveit.numbers.number_sets.integers.int_interval_within_int
12theorem  ⊢  
 proveit.numbers.number_sets.integers.interval_lower_bound
13instantiation24, 25, 16  ⊢  
  : , : , :
14instantiation17, 18, 19  ⊢  
  : , :
15assumption  ⊢  
16theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
17theorem  ⊢  
 proveit.numbers.addition.add_int_closure_bin
18instantiation24, 20, 21  ⊢  
  : , : , :
19instantiation22, 23  ⊢  
  :
20theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_int
21theorem  ⊢  
 proveit.physics.quantum.QPE._two_pow_t_minus_one_is_nat_pos
22theorem  ⊢  
 proveit.numbers.negation.int_closure
23instantiation24, 25, 26  ⊢  
  : , : , :
24theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
25theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
26theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2