| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6 | , ⊢ |
| : , : , : |
1 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_pos_less |
2 | reference | 86 | ⊢ |
3 | instantiation | 7, 16, 23 | , ⊢ |
| : , : |
4 | instantiation | 7, 16, 17 | , ⊢ |
| : , : |
5 | instantiation | 8, 9, 10 | , ⊢ |
| : , : |
6 | instantiation | 11, 12 | ⊢ |
| : |
7 | theorem | | ⊢ |
| proveit.numbers.addition.add_real_closure_bin |
8 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.and_if_both |
9 | instantiation | 13, 14 | , ⊢ |
| : , : |
10 | instantiation | 15, 16, 23, 17, 18 | , ⊢ |
| : , : , : |
11 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
12 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
13 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
14 | instantiation | 19, 20 | , ⊢ |
| : , : |
15 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_right_term_bound |
16 | instantiation | 111, 94, 21 | , ⊢ |
| : , : , : |
17 | instantiation | 32, 24 | ⊢ |
| : |
18 | instantiation | 22, 23, 24, 83, 25, 26, 27*, 28* | ⊢ |
| : , : , : |
19 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.pos_difference |
20 | instantiation | 58, 29, 30 | , ⊢ |
| : , : , : |
21 | instantiation | 111, 103, 31 | , ⊢ |
| : , : , : |
22 | theorem | | ⊢ |
| proveit.numbers.multiplication.reversed_strong_bound_via_right_factor_bound |
23 | instantiation | 32, 83 | ⊢ |
| : |
24 | instantiation | 33, 44, 83, 35 | ⊢ |
| : , : , : |
25 | instantiation | 34, 44, 83, 35 | ⊢ |
| : , : , : |
26 | instantiation | 36, 37 | ⊢ |
| : |
27 | instantiation | 38, 75, 39* | ⊢ |
| : , : |
28 | instantiation | 40, 41, 42 | ⊢ |
| : , : , : |
29 | instantiation | 43, 83, 44, 45, 46, 47* | ⊢ |
| : , : , : |
30 | instantiation | 72, 64, 101, 49 | , ⊢ |
| : , : , : |
31 | instantiation | 111, 48, 49 | , ⊢ |
| : , : , : |
32 | theorem | | ⊢ |
| proveit.numbers.negation.real_closure |
33 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.all_in_interval_co__is__real |
34 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.interval_co_upper_bound |
35 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._scaled_delta_b_floor_in_interval |
36 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.negative_if_in_neg_int |
37 | instantiation | 50, 51 | ⊢ |
| : |
38 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_neg_left |
39 | instantiation | 52, 75 | ⊢ |
| : |
40 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
41 | instantiation | 53, 106, 113, 67, 69, 68, 54, 70, 71 | ⊢ |
| : , : , : , : , : , : |
42 | instantiation | 55, 67, 113, 68, 69, 75, 70, 71, 56* | ⊢ |
| : , : , : , : , : |
43 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
44 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
45 | instantiation | 111, 94, 57 | ⊢ |
| : , : , : |
46 | instantiation | 58, 59, 60 | ⊢ |
| : , : , : |
47 | instantiation | 61, 62, 63 | ⊢ |
| : , : , : |
48 | instantiation | 92, 64, 101 | ⊢ |
| : , : |
49 | assumption | | ⊢ |
50 | theorem | | ⊢ |
| proveit.numbers.negation.int_neg_closure |
51 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
52 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
53 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
54 | instantiation | 65, 75 | ⊢ |
| : |
55 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_neg_any |
56 | instantiation | 66, 67, 113, 68, 69, 70, 71 | ⊢ |
| : , : , : , : |
57 | instantiation | 111, 103, 77 | ⊢ |
| : , : , : |
58 | theorem | | ⊢ |
| proveit.numbers.ordering.transitivity_less_less_eq |
59 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
60 | instantiation | 72, 99, 93, 85 | ⊢ |
| : , : , : |
61 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
62 | instantiation | 73, 75 | ⊢ |
| : |
63 | instantiation | 74, 75, 76 | ⊢ |
| : , : |
64 | instantiation | 100, 77, 99 | ⊢ |
| : , : |
65 | theorem | | ⊢ |
| proveit.numbers.negation.complex_closure |
66 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_any |
67 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
68 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
69 | instantiation | 78 | ⊢ |
| : , : |
70 | instantiation | 79, 80, 81 | ⊢ |
| : , : |
71 | instantiation | 111, 87, 82 | ⊢ |
| : , : , : |
72 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.interval_lower_bound |
73 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
74 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
75 | instantiation | 111, 87, 83 | ⊢ |
| : , : , : |
76 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
77 | instantiation | 111, 84, 85 | ⊢ |
| : , : , : |
78 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
79 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
80 | instantiation | 111, 87, 86 | ⊢ |
| : , : , : |
81 | instantiation | 111, 87, 88 | ⊢ |
| : , : , : |
82 | instantiation | 89, 90 | ⊢ |
| : |
83 | instantiation | 111, 94, 91 | ⊢ |
| : , : , : |
84 | instantiation | 92, 99, 93 | ⊢ |
| : , : |
85 | assumption | | ⊢ |
86 | instantiation | 111, 94, 95 | ⊢ |
| : , : , : |
87 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
88 | instantiation | 96, 97, 98 | ⊢ |
| : , : , : |
89 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._delta_b_is_real |
90 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._best_floor_is_int |
91 | instantiation | 111, 103, 99 | ⊢ |
| : , : , : |
92 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
93 | instantiation | 100, 101, 102 | ⊢ |
| : , : |
94 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
95 | instantiation | 111, 103, 110 | ⊢ |
| : , : , : |
96 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
97 | instantiation | 104, 105 | ⊢ |
| : , : |
98 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
99 | instantiation | 111, 112, 106 | ⊢ |
| : , : , : |
100 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
101 | instantiation | 111, 107, 108 | ⊢ |
| : , : , : |
102 | instantiation | 109, 110 | ⊢ |
| : |
103 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
104 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
105 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
106 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
107 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
108 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._two_pow_t_minus_one_is_nat_pos |
109 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
110 | instantiation | 111, 112, 113 | ⊢ |
| : , : , : |
111 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
112 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
113 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |