logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3,  ⊢  
  : , :
1theorem  ⊢  
 proveit.numbers.addition.add_real_closure_bin
2instantiation28, 8, 4,  ⊢  
  : , : , :
3instantiation5, 6  ⊢  
  :
4instantiation28, 12, 7,  ⊢  
  : , : , :
5theorem  ⊢  
 proveit.numbers.negation.real_closure
6instantiation28, 8, 9  ⊢  
  : , : , :
7instantiation28, 10, 11,  ⊢  
  : , : , :
8theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
9instantiation28, 12, 18  ⊢  
  : , : , :
10instantiation17, 13, 22  ⊢  
  : , :
11assumption  ⊢  
12theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
13instantiation21, 14, 18  ⊢  
  : , :
14instantiation28, 15, 16  ⊢  
  : , : , :
15instantiation17, 18, 19  ⊢  
  : , :
16assumption  ⊢  
17theorem  ⊢  
 proveit.numbers.number_sets.integers.int_interval_within_int
18instantiation28, 29, 20  ⊢  
  : , : , :
19instantiation21, 22, 23  ⊢  
  : , :
20theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
21theorem  ⊢  
 proveit.numbers.addition.add_int_closure_bin
22instantiation28, 24, 25  ⊢  
  : , : , :
23instantiation26, 27  ⊢  
  :
24theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_int
25theorem  ⊢  
 proveit.physics.quantum.QPE._two_pow_t_minus_one_is_nat_pos
26theorem  ⊢  
 proveit.numbers.negation.int_closure
27instantiation28, 29, 30  ⊢  
  : , : , :
28theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
29theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
30theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2