| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , ⊢ |
| : , : |
1 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.and_if_both |
2 | instantiation | 4, 5 | , ⊢ |
| : , : |
3 | instantiation | 6, 7, 14, 8, 9 | , ⊢ |
| : , : , : |
4 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
5 | instantiation | 10, 11 | , ⊢ |
| : , : |
6 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_right_term_bound |
7 | instantiation | 102, 85, 12 | , ⊢ |
| : , : , : |
8 | instantiation | 23, 15 | ⊢ |
| : |
9 | instantiation | 13, 14, 15, 74, 16, 17, 18*, 19* | ⊢ |
| : , : , : |
10 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.pos_difference |
11 | instantiation | 49, 20, 21 | , ⊢ |
| : , : , : |
12 | instantiation | 102, 94, 22 | , ⊢ |
| : , : , : |
13 | theorem | | ⊢ |
| proveit.numbers.multiplication.reversed_strong_bound_via_right_factor_bound |
14 | instantiation | 23, 74 | ⊢ |
| : |
15 | instantiation | 24, 35, 74, 26 | ⊢ |
| : , : , : |
16 | instantiation | 25, 35, 74, 26 | ⊢ |
| : , : , : |
17 | instantiation | 27, 28 | ⊢ |
| : |
18 | instantiation | 29, 66, 30* | ⊢ |
| : , : |
19 | instantiation | 31, 32, 33 | ⊢ |
| : , : , : |
20 | instantiation | 34, 74, 35, 36, 37, 38* | ⊢ |
| : , : , : |
21 | instantiation | 63, 55, 92, 40 | , ⊢ |
| : , : , : |
22 | instantiation | 102, 39, 40 | , ⊢ |
| : , : , : |
23 | theorem | | ⊢ |
| proveit.numbers.negation.real_closure |
24 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.all_in_interval_co__is__real |
25 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.interval_co_upper_bound |
26 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._scaled_delta_b_floor_in_interval |
27 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.negative_if_in_neg_int |
28 | instantiation | 41, 42 | ⊢ |
| : |
29 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_neg_left |
30 | instantiation | 43, 66 | ⊢ |
| : |
31 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
32 | instantiation | 44, 97, 104, 58, 60, 59, 45, 61, 62 | ⊢ |
| : , : , : , : , : , : |
33 | instantiation | 46, 58, 104, 59, 60, 66, 61, 62, 47* | ⊢ |
| : , : , : , : , : |
34 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
35 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
36 | instantiation | 102, 85, 48 | ⊢ |
| : , : , : |
37 | instantiation | 49, 50, 51 | ⊢ |
| : , : , : |
38 | instantiation | 52, 53, 54 | ⊢ |
| : , : , : |
39 | instantiation | 83, 55, 92 | ⊢ |
| : , : |
40 | assumption | | ⊢ |
41 | theorem | | ⊢ |
| proveit.numbers.negation.int_neg_closure |
42 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
43 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
44 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
45 | instantiation | 56, 66 | ⊢ |
| : |
46 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_neg_any |
47 | instantiation | 57, 58, 104, 59, 60, 61, 62 | ⊢ |
| : , : , : , : |
48 | instantiation | 102, 94, 68 | ⊢ |
| : , : , : |
49 | theorem | | ⊢ |
| proveit.numbers.ordering.transitivity_less_less_eq |
50 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
51 | instantiation | 63, 90, 84, 76 | ⊢ |
| : , : , : |
52 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
53 | instantiation | 64, 66 | ⊢ |
| : |
54 | instantiation | 65, 66, 67 | ⊢ |
| : , : |
55 | instantiation | 91, 68, 90 | ⊢ |
| : , : |
56 | theorem | | ⊢ |
| proveit.numbers.negation.complex_closure |
57 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_any |
58 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
59 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
60 | instantiation | 69 | ⊢ |
| : , : |
61 | instantiation | 70, 71, 72 | ⊢ |
| : , : |
62 | instantiation | 102, 78, 73 | ⊢ |
| : , : , : |
63 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.interval_lower_bound |
64 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
65 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
66 | instantiation | 102, 78, 74 | ⊢ |
| : , : , : |
67 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
68 | instantiation | 102, 75, 76 | ⊢ |
| : , : , : |
69 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
70 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
71 | instantiation | 102, 78, 77 | ⊢ |
| : , : , : |
72 | instantiation | 102, 78, 79 | ⊢ |
| : , : , : |
73 | instantiation | 80, 81 | ⊢ |
| : |
74 | instantiation | 102, 85, 82 | ⊢ |
| : , : , : |
75 | instantiation | 83, 90, 84 | ⊢ |
| : , : |
76 | assumption | | ⊢ |
77 | instantiation | 102, 85, 86 | ⊢ |
| : , : , : |
78 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
79 | instantiation | 87, 88, 89 | ⊢ |
| : , : , : |
80 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._delta_b_is_real |
81 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._best_floor_is_int |
82 | instantiation | 102, 94, 90 | ⊢ |
| : , : , : |
83 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
84 | instantiation | 91, 92, 93 | ⊢ |
| : , : |
85 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
86 | instantiation | 102, 94, 101 | ⊢ |
| : , : , : |
87 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
88 | instantiation | 95, 96 | ⊢ |
| : , : |
89 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
90 | instantiation | 102, 103, 97 | ⊢ |
| : , : , : |
91 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
92 | instantiation | 102, 98, 99 | ⊢ |
| : , : , : |
93 | instantiation | 100, 101 | ⊢ |
| : |
94 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
95 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
96 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
97 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
98 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
99 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._two_pow_t_minus_one_is_nat_pos |
100 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
101 | instantiation | 102, 103, 104 | ⊢ |
| : , : , : |
102 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
103 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
104 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |