| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4 | ⊢  |
| | : , : , : , :  |
| 1 | reference | 8 | ⊢  |
| 2 | instantiation | 17, 31, 5, 6* | ⊢  |
| | : , : , :  |
| 3 | instantiation | 20 | ⊢  |
| | :  |
| 4 | instantiation | 21, 7 | ⊢  |
| | : , :  |
| 5 | instantiation | 8, 9, 10, 11 | ⊢  |
| | : , : , : , :  |
| 6 | instantiation | 12, 77, 59, 42, 43, 13, 14*, 15* | ⊢  |
| | : , : , : , :  |
| 7 | instantiation | 30, 16 | ⊢  |
| | : , :  |
| 8 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 9 | instantiation | 17, 60, 18, 19* | ⊢  |
| | : , : , :  |
| 10 | instantiation | 20 | ⊢  |
| | :  |
| 11 | instantiation | 21, 22 | ⊢  |
| | : , :  |
| 12 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.md_nine_add_one |
| 13 | instantiation | 23, 24 | ⊢  |
| | :  |
| 14 | instantiation | 34, 35, 59, 41, 25, 61, 26 | ⊢  |
| | : , : , : , : , : , : , :  |
| 15 | instantiation | 27, 28, 29 | ⊢  |
| | : , : , :  |
| 16 | instantiation | 39, 40, 36, 42 | ⊢  |
| | : , :  |
| 17 | axiom | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_incr |
| 18 | instantiation | 68 | ⊢  |
| | : , : , : , : , : , : , : , : , :  |
| 19 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_9_1 |
| 20 | axiom | | ⊢  |
| | proveit.logic.equality.equals_reflexivity |
| 21 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 22 | instantiation | 30, 31 | ⊢  |
| | : , :  |
| 23 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 24 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat9 |
| 25 | instantiation | 45, 59 | ⊢  |
| | : , :  |
| 26 | instantiation | 46, 47 | ⊢  |
| | : , : , :  |
| 27 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 28 | instantiation | 32, 33 | ⊢  |
| | : , : , :  |
| 29 | instantiation | 34, 35, 59, 36, 37, 61, 38 | ⊢  |
| | : , : , : , : , : , : , :  |
| 30 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.range_from1_len |
| 31 | instantiation | 39, 40, 41, 42, 43 | ⊢  |
| | : , :  |
| 32 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 33 | instantiation | 44, 65 | ⊢  |
| | :  |
| 34 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_portion_substitution |
| 35 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 36 | instantiation | 48 | ⊢  |
| | : , :  |
| 37 | instantiation | 45, 59 | ⊢  |
| | : , :  |
| 38 | instantiation | 46, 47 | ⊢  |
| | : , : , :  |
| 39 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.deci_sequence_is_nat |
| 40 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 41 | instantiation | 48 | ⊢  |
| | : , :  |
| 42 | instantiation | 50, 49, 52 | ⊢  |
| | : , : , :  |
| 43 | instantiation | 50, 51, 52 | ⊢  |
| | : , : , :  |
| 44 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_left |
| 45 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.range_from1_len_typical_eq |
| 46 | axiom | | ⊢  |
| | proveit.core_expr_types.tuples.empty_range_def |
| 47 | instantiation | 53, 54, 55 | ⊢  |
| | : , : , :  |
| 48 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 49 | instantiation | 58, 77, 56, 57 | ⊢  |
| | : , : , : , : , :  |
| 50 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 51 | instantiation | 58, 59, 60, 61, 62 | ⊢  |
| | : , : , : , : , :  |
| 52 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.N_leq_9_enumSet |
| 53 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 54 | instantiation | 63, 65 | ⊢  |
| | :  |
| 55 | instantiation | 64, 65, 66 | ⊢  |
| | : , :  |
| 56 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat8 |
| 57 | instantiation | 67 | ⊢  |
| | : , : , : , : , : , : , : , :  |
| 58 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.in_enumerated_set |
| 59 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 60 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat9 |
| 61 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 62 | instantiation | 68 | ⊢  |
| | : , : , : , : , : , : , : , : , :  |
| 63 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_right |
| 64 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 65 | instantiation | 75, 69, 70 | ⊢  |
| | : , : , :  |
| 66 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.zero_is_complex |
| 67 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
| 68 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
| 69 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 70 | instantiation | 75, 71, 72 | ⊢  |
| | : , : , :  |
| 71 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 72 | instantiation | 75, 73, 74 | ⊢  |
| | : , : , :  |
| 73 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 74 | instantiation | 75, 76, 77 | ⊢  |
| | : , : , :  |
| 75 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 76 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 77 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| *equality replacement requirements |