logo

Expression of type ExprTuple

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, delta, k, theta
from proveit.numbers import Add, Mult, e, i, pi, two
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(e, Mult(Add(Mult(two, pi, i, delta), Mult(two, pi, i, theta)), k))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\mathsf{e}, \left(\left(2 \cdot \pi \cdot \mathsf{i} \cdot \delta\right) + \left(2 \cdot \pi \cdot \mathsf{i} \cdot \theta\right)\right) \cdot k\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Literal
2Operationoperator: 11
operands: 3
3ExprTuple4, 5
4Operationoperator: 6
operands: 7
5Variable
6Literal
7ExprTuple8, 9
8Operationoperator: 11
operands: 10
9Operationoperator: 11
operands: 12
10ExprTuple14, 15, 16, 13
11Literal
12ExprTuple14, 15, 16, 17
13Variable
14Literal
15Literal
16Literal
17Variable