logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, , , ,  ⊢  
  : , : , :
1theorem  ⊢  
 proveit.logic.equality.sub_right_side_into
2instantiation11, 4, , , ,  ⊢  
  : , :
3instantiation5, 6, 7, , , ,  ⊢  
  : , : , :
4instantiation8, 22, 23, 25, , , ,  ⊢  
  : , : , :
5axiom  ⊢  
 proveit.logic.equality.equals_transitivity
6instantiation9, 10,  ⊢  
  : , : , :
7instantiation11, 12, , , ,  ⊢  
  : , :
8theorem  ⊢  
 proveit.numbers.division.frac_cancel_left
9axiom  ⊢  
 proveit.logic.equality.substitution
10instantiation13, 34, 25,  ⊢  
  : , :
11theorem  ⊢  
 proveit.logic.equality.equals_reversal
12instantiation14, 25, 34, 15, 16, 17*, 18*, , , ,  ⊢  
  : , : , : , :
13theorem  ⊢  
 proveit.numbers.multiplication.commutation
14theorem  ⊢  
 proveit.numbers.division.prod_of_fracs
15instantiation38, 19, 20  ⊢  
  : , : , :
16instantiation21, 22, 23, , ,  ⊢  
  : , :
17instantiation24, 25  ⊢  
  :
18instantiation26, 27,  ⊢  
  :
19theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero
20instantiation38, 28, 29  ⊢  
  : , : , :
21theorem  ⊢  
 proveit.numbers.multiplication.mult_complex_nonzero_closure_bin
22instantiation31, 34, 30,  ⊢  
  :
23instantiation31, 35, 32,  ⊢  
  :
24theorem  ⊢  
 proveit.numbers.division.frac_one_denom
25assumption  ⊢  
26theorem  ⊢  
 proveit.numbers.multiplication.elim_one_left
27instantiation33, 34, 35,  ⊢  
  : , :
28theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero
29instantiation38, 36, 37  ⊢  
  : , : , :
30assumption  ⊢  
31theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.nonzero_complex_is_complex_nonzero
32assumption  ⊢  
33theorem  ⊢  
 proveit.numbers.multiplication.mult_complex_closure_bin
34assumption  ⊢  
35assumption  ⊢  
36theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero
37instantiation38, 39, 40  ⊢  
  : , : , :
38theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
39theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int
40theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
*equality replacement requirements