logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, , , ,  ⊢  
  : , : , :
1axiom  ⊢  
 proveit.logic.equality.equals_transitivity
2instantiation4, 5,  ⊢  
  : , : , :
3instantiation6, 7, , , ,  ⊢  
  : , :
4axiom  ⊢  
 proveit.logic.equality.substitution
5instantiation8, 29, 20,  ⊢  
  : , :
6theorem  ⊢  
 proveit.logic.equality.equals_reversal
7instantiation9, 20, 29, 10, 11, 12*, 13*, , , ,  ⊢  
  : , : , : , :
8theorem  ⊢  
 proveit.numbers.multiplication.commutation
9theorem  ⊢  
 proveit.numbers.division.prod_of_fracs
10instantiation33, 14, 15  ⊢  
  : , : , :
11instantiation16, 17, 18, , ,  ⊢  
  : , :
12instantiation19, 20  ⊢  
  :
13instantiation21, 22,  ⊢  
  :
14theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero
15instantiation33, 23, 24  ⊢  
  : , : , :
16theorem  ⊢  
 proveit.numbers.multiplication.mult_complex_nonzero_closure_bin
17instantiation26, 29, 25,  ⊢  
  :
18instantiation26, 30, 27,  ⊢  
  :
19theorem  ⊢  
 proveit.numbers.division.frac_one_denom
20assumption  ⊢  
21theorem  ⊢  
 proveit.numbers.multiplication.elim_one_left
22instantiation28, 29, 30,  ⊢  
  : , :
23theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero
24instantiation33, 31, 32  ⊢  
  : , : , :
25assumption  ⊢  
26theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.nonzero_complex_is_complex_nonzero
27assumption  ⊢  
28theorem  ⊢  
 proveit.numbers.multiplication.mult_complex_closure_bin
29assumption  ⊢  
30assumption  ⊢  
31theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero
32instantiation33, 34, 35  ⊢  
  : , : , :
33theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
34theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int
35theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
*equality replacement requirements