logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, , , ,  ⊢  
  : , :
1theorem  ⊢  
 proveit.logic.equality.equals_reversal
2instantiation3, 14, 23, 4, 5, 6*, 7*, , , ,  ⊢  
  : , : , : , :
3theorem  ⊢  
 proveit.numbers.division.prod_of_fracs
4instantiation27, 8, 9  ⊢  
  : , : , :
5instantiation10, 11, 12, , ,  ⊢  
  : , :
6instantiation13, 14  ⊢  
  :
7instantiation15, 16,  ⊢  
  :
8theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero
9instantiation27, 17, 18  ⊢  
  : , : , :
10theorem  ⊢  
 proveit.numbers.multiplication.mult_complex_nonzero_closure_bin
11instantiation20, 23, 19,  ⊢  
  :
12instantiation20, 24, 21,  ⊢  
  :
13theorem  ⊢  
 proveit.numbers.division.frac_one_denom
14assumption  ⊢  
15theorem  ⊢  
 proveit.numbers.multiplication.elim_one_left
16instantiation22, 23, 24,  ⊢  
  : , :
17theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero
18instantiation27, 25, 26  ⊢  
  : , : , :
19assumption  ⊢  
20theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.nonzero_complex_is_complex_nonzero
21assumption  ⊢  
22theorem  ⊢  
 proveit.numbers.multiplication.mult_complex_closure_bin
23assumption  ⊢  
24assumption  ⊢  
25theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero
26instantiation27, 28, 29  ⊢  
  : , : , :
27theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
28theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int
29theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
*equality replacement requirements