| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8 | , , , , ⊢  |
| | : , :  |
| 1 | theorem | | ⊢  |
| | proveit.numbers.absolute_value.generalized_triangle_inequality |
| 2 | instantiation | 9, 57, 83, 59, 63, 66, 10 | ⊢  |
| | : , : , : , : , :  |
| 3 | reference | 13 | ⊢  |
| 4 | instantiation | 11, 12, 13, 14 | ⊢  |
| | : , : , : , :  |
| 5 | assumption | | ⊢  |
| 6 | assumption | | ⊢  |
| 7 | assumption | | ⊢  |
| 8 | assumption | | ⊢  |
| 9 | theorem | | ⊢  |
| | proveit.numbers.addition.add_nat_pos_from_nonneg |
| 10 | instantiation | 15, 16 | ⊢  |
| | :  |
| 11 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 12 | instantiation | 17, 18, 19, 20, 37, 21, 22, 23* | ⊢  |
| | : , : , : , :  |
| 13 | instantiation | 24, 25, 50 | ⊢  |
| | : , :  |
| 14 | instantiation | 26, 27 | ⊢  |
| | : , :  |
| 15 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 16 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 17 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.general_len |
| 18 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat4 |
| 19 | instantiation | 44 | ⊢  |
| | : , : , : , :  |
| 20 | instantiation | 44 | ⊢  |
| | : , : , : , :  |
| 21 | instantiation | 28, 83, 38 | ⊢  |
| | : , : , :  |
| 22 | instantiation | 28, 66, 39 | ⊢  |
| | : , : , :  |
| 23 | instantiation | 70, 29, 30 | ⊢  |
| | : , : , :  |
| 24 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 25 | instantiation | 81, 68, 31 | ⊢  |
| | : , : , :  |
| 26 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 27 | instantiation | 32, 33 | ⊢  |
| | : , :  |
| 28 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 29 | instantiation | 34, 35, 36, 37, 38, 39 | ⊢  |
| | : , : , : , :  |
| 30 | instantiation | 70, 40, 41 | ⊢  |
| | : , : , :  |
| 31 | instantiation | 81, 75, 42 | ⊢  |
| | : , : , :  |
| 32 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.range_from1_len |
| 33 | instantiation | 43, 66, 63 | ⊢  |
| | : , :  |
| 34 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 35 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 36 | instantiation | 44 | ⊢  |
| | : , : , : , :  |
| 37 | instantiation | 44 | ⊢  |
| | : , : , : , :  |
| 38 | instantiation | 45, 61, 47 | ⊢  |
| | : , : , :  |
| 39 | instantiation | 46, 61, 50, 47 | ⊢  |
| | : , : , :  |
| 40 | instantiation | 48, 58, 83, 57, 60, 59, 61, 50 | ⊢  |
| | : , : , : , : , : , : , :  |
| 41 | instantiation | 56, 57, 63, 83, 59, 49, 61, 50, 51* | ⊢  |
| | : , : , : , : , : , :  |
| 42 | instantiation | 81, 79, 52 | ⊢  |
| | : , : , :  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.addition.add_nat_closure_bin |
| 44 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 45 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.add_cancel_triple_12 |
| 46 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.add_cancel_triple_32 |
| 47 | instantiation | 53 | ⊢  |
| | :  |
| 48 | theorem | | ⊢  |
| | proveit.numbers.addition.leftward_commutation |
| 49 | instantiation | 54 | ⊢  |
| | : , : , :  |
| 50 | instantiation | 81, 68, 55 | ⊢  |
| | : , : , :  |
| 51 | instantiation | 56, 57, 58, 83, 59, 60, 61, 62* | ⊢  |
| | : , : , : , : , : , :  |
| 52 | instantiation | 81, 82, 63 | ⊢  |
| | : , : , :  |
| 53 | axiom | | ⊢  |
| | proveit.logic.equality.equals_reflexivity |
| 54 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 55 | instantiation | 64, 65, 66 | ⊢  |
| | : , : , :  |
| 56 | theorem | | ⊢  |
| | proveit.numbers.addition.association |
| 57 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 58 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 59 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 60 | instantiation | 67 | ⊢  |
| | : , :  |
| 61 | instantiation | 81, 68, 69 | ⊢  |
| | : , : , :  |
| 62 | instantiation | 70, 71, 72 | ⊢  |
| | : , : , :  |
| 63 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 64 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.unfold_subset_eq |
| 65 | instantiation | 73, 74 | ⊢  |
| | : , :  |
| 66 | assumption | | ⊢  |
| 67 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 68 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 69 | instantiation | 81, 75, 76 | ⊢  |
| | : , : , :  |
| 70 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 71 | instantiation | 77, 78 | ⊢  |
| | : , : , :  |
| 72 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_2_1 |
| 73 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.relax_proper_subset |
| 74 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.nat_within_real |
| 75 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 76 | instantiation | 81, 79, 80 | ⊢  |
| | : , : , :  |
| 77 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 78 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 79 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 80 | instantiation | 81, 82, 83 | ⊢  |
| | : , : , :  |
| 81 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 82 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 83 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| *equality replacement requirements |