| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8 | , , , , ⊢ |
| : , : |
1 | theorem | | ⊢ |
| proveit.numbers.absolute_value.generalized_triangle_inequality |
2 | instantiation | 9, 57, 83, 59, 63, 66, 10 | ⊢ |
| : , : , : , : , : |
3 | reference | 13 | ⊢ |
4 | instantiation | 11, 12, 13, 14 | ⊢ |
| : , : , : , : |
5 | assumption | | ⊢ |
6 | assumption | | ⊢ |
7 | assumption | | ⊢ |
8 | assumption | | ⊢ |
9 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_pos_from_nonneg |
10 | instantiation | 15, 16 | ⊢ |
| : |
11 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
12 | instantiation | 17, 18, 19, 20, 37, 21, 22, 23* | ⊢ |
| : , : , : , : |
13 | instantiation | 24, 25, 50 | ⊢ |
| : , : |
14 | instantiation | 26, 27 | ⊢ |
| : , : |
15 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
16 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
17 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.general_len |
18 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
19 | instantiation | 44 | ⊢ |
| : , : , : , : |
20 | instantiation | 44 | ⊢ |
| : , : , : , : |
21 | instantiation | 28, 83, 38 | ⊢ |
| : , : , : |
22 | instantiation | 28, 66, 39 | ⊢ |
| : , : , : |
23 | instantiation | 70, 29, 30 | ⊢ |
| : , : , : |
24 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
25 | instantiation | 81, 68, 31 | ⊢ |
| : , : , : |
26 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
27 | instantiation | 32, 33 | ⊢ |
| : , : |
28 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
29 | instantiation | 34, 35, 36, 37, 38, 39 | ⊢ |
| : , : , : , : |
30 | instantiation | 70, 40, 41 | ⊢ |
| : , : , : |
31 | instantiation | 81, 75, 42 | ⊢ |
| : , : , : |
32 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len |
33 | instantiation | 43, 66, 63 | ⊢ |
| : , : |
34 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
35 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
36 | instantiation | 44 | ⊢ |
| : , : , : , : |
37 | instantiation | 44 | ⊢ |
| : , : , : , : |
38 | instantiation | 45, 61, 47 | ⊢ |
| : , : , : |
39 | instantiation | 46, 61, 50, 47 | ⊢ |
| : , : , : |
40 | instantiation | 48, 58, 83, 57, 60, 59, 61, 50 | ⊢ |
| : , : , : , : , : , : , : |
41 | instantiation | 56, 57, 63, 83, 59, 49, 61, 50, 51* | ⊢ |
| : , : , : , : , : , : |
42 | instantiation | 81, 79, 52 | ⊢ |
| : , : , : |
43 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_closure_bin |
44 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
45 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_12 |
46 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_32 |
47 | instantiation | 53 | ⊢ |
| : |
48 | theorem | | ⊢ |
| proveit.numbers.addition.leftward_commutation |
49 | instantiation | 54 | ⊢ |
| : , : , : |
50 | instantiation | 81, 68, 55 | ⊢ |
| : , : , : |
51 | instantiation | 56, 57, 58, 83, 59, 60, 61, 62* | ⊢ |
| : , : , : , : , : , : |
52 | instantiation | 81, 82, 63 | ⊢ |
| : , : , : |
53 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
54 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
55 | instantiation | 64, 65, 66 | ⊢ |
| : , : , : |
56 | theorem | | ⊢ |
| proveit.numbers.addition.association |
57 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
58 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
59 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
60 | instantiation | 67 | ⊢ |
| : , : |
61 | instantiation | 81, 68, 69 | ⊢ |
| : , : , : |
62 | instantiation | 70, 71, 72 | ⊢ |
| : , : , : |
63 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
64 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
65 | instantiation | 73, 74 | ⊢ |
| : , : |
66 | assumption | | ⊢ |
67 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
68 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
69 | instantiation | 81, 75, 76 | ⊢ |
| : , : , : |
70 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
71 | instantiation | 77, 78 | ⊢ |
| : , : , : |
72 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_1 |
73 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
74 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_within_real |
75 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
76 | instantiation | 81, 79, 80 | ⊢ |
| : , : , : |
77 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
78 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
79 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
80 | instantiation | 81, 82, 83 | ⊢ |
| : , : , : |
81 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
82 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
83 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |