logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4, 5, 6, 7, 8, 9*  ⊢  
  : , : , : , : , : , :
1reference12  ⊢  
2reference13  ⊢  
3theorem  ⊢  
 proveit.numbers.numerals.decimals.nat3
4reference38  ⊢  
5reference15  ⊢  
6instantiation10  ⊢  
  : , : , :
7reference17  ⊢  
8instantiation36, 23, 11  ⊢  
  : , : , :
9instantiation12, 13, 14, 38, 15, 16, 17, 18*  ⊢  
  : , : , : , : , : , :
10theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_3_typical_eq
11instantiation19, 20, 21  ⊢  
  : , : , :
12theorem  ⊢  
 proveit.numbers.addition.association
13axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
14theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
15theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
16instantiation22  ⊢  
  : , :
17instantiation36, 23, 24  ⊢  
  : , : , :
18instantiation25, 26, 27  ⊢  
  : , : , :
19theorem  ⊢  
 proveit.logic.sets.inclusion.unfold_subset_eq
20instantiation28, 29  ⊢  
  : , :
21assumption  ⊢  
22theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
23theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
24instantiation36, 30, 31  ⊢  
  : , : , :
25axiom  ⊢  
 proveit.logic.equality.equals_transitivity
26instantiation32, 33  ⊢  
  : , : , :
27theorem  ⊢  
 proveit.numbers.numerals.decimals.add_2_1
28theorem  ⊢  
 proveit.logic.sets.inclusion.relax_proper_subset
29theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.nat_within_real
30theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
31instantiation36, 34, 35  ⊢  
  : , : , :
32axiom  ⊢  
 proveit.logic.equality.substitution
33theorem  ⊢  
 proveit.numbers.numerals.decimals.add_1_1
34theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
35instantiation36, 37, 38  ⊢  
  : , : , :
36theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
37theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
38theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
*equality replacement requirements