| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4 | ⊢  |
| | : , : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 2 | instantiation | 5, 6, 7, 8, 25, 9, 10, 11* | ⊢  |
| | : , : , : , :  |
| 3 | instantiation | 12, 13, 38 | ⊢  |
| | : , :  |
| 4 | instantiation | 14, 15 | ⊢  |
| | : , :  |
| 5 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.general_len |
| 6 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat4 |
| 7 | instantiation | 32 | ⊢  |
| | : , : , : , :  |
| 8 | instantiation | 32 | ⊢  |
| | : , : , : , :  |
| 9 | instantiation | 16, 71, 26 | ⊢  |
| | : , : , :  |
| 10 | instantiation | 16, 54, 27 | ⊢  |
| | : , : , :  |
| 11 | instantiation | 58, 17, 18 | ⊢  |
| | : , : , :  |
| 12 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 13 | instantiation | 69, 56, 19 | ⊢  |
| | : , : , :  |
| 14 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 15 | instantiation | 20, 21 | ⊢  |
| | : , :  |
| 16 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 17 | instantiation | 22, 23, 24, 25, 26, 27 | ⊢  |
| | : , : , : , :  |
| 18 | instantiation | 58, 28, 29 | ⊢  |
| | : , : , :  |
| 19 | instantiation | 69, 63, 30 | ⊢  |
| | : , : , :  |
| 20 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.range_from1_len |
| 21 | instantiation | 31, 54, 51 | ⊢  |
| | : , :  |
| 22 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 23 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 24 | instantiation | 32 | ⊢  |
| | : , : , : , :  |
| 25 | instantiation | 32 | ⊢  |
| | : , : , : , :  |
| 26 | instantiation | 33, 49, 35 | ⊢  |
| | : , : , :  |
| 27 | instantiation | 34, 49, 38, 35 | ⊢  |
| | : , : , :  |
| 28 | instantiation | 36, 46, 71, 45, 48, 47, 49, 38 | ⊢  |
| | : , : , : , : , : , : , :  |
| 29 | instantiation | 44, 45, 51, 71, 47, 37, 49, 38, 39* | ⊢  |
| | : , : , : , : , : , :  |
| 30 | instantiation | 69, 67, 40 | ⊢  |
| | : , : , :  |
| 31 | theorem | | ⊢  |
| | proveit.numbers.addition.add_nat_closure_bin |
| 32 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 33 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.add_cancel_triple_12 |
| 34 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.add_cancel_triple_32 |
| 35 | instantiation | 41 | ⊢  |
| | :  |
| 36 | theorem | | ⊢  |
| | proveit.numbers.addition.leftward_commutation |
| 37 | instantiation | 42 | ⊢  |
| | : , : , :  |
| 38 | instantiation | 69, 56, 43 | ⊢  |
| | : , : , :  |
| 39 | instantiation | 44, 45, 46, 71, 47, 48, 49, 50* | ⊢  |
| | : , : , : , : , : , :  |
| 40 | instantiation | 69, 70, 51 | ⊢  |
| | : , : , :  |
| 41 | axiom | | ⊢  |
| | proveit.logic.equality.equals_reflexivity |
| 42 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 43 | instantiation | 52, 53, 54 | ⊢  |
| | : , : , :  |
| 44 | theorem | | ⊢  |
| | proveit.numbers.addition.association |
| 45 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 46 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 47 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 48 | instantiation | 55 | ⊢  |
| | : , :  |
| 49 | instantiation | 69, 56, 57 | ⊢  |
| | : , : , :  |
| 50 | instantiation | 58, 59, 60 | ⊢  |
| | : , : , :  |
| 51 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 52 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.unfold_subset_eq |
| 53 | instantiation | 61, 62 | ⊢  |
| | : , :  |
| 54 | assumption | | ⊢  |
| 55 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 56 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 57 | instantiation | 69, 63, 64 | ⊢  |
| | : , : , :  |
| 58 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 59 | instantiation | 65, 66 | ⊢  |
| | : , : , :  |
| 60 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_2_1 |
| 61 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.relax_proper_subset |
| 62 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.nat_within_real |
| 63 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 64 | instantiation | 69, 67, 68 | ⊢  |
| | : , : , :  |
| 65 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 66 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 67 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 68 | instantiation | 69, 70, 71 | ⊢  |
| | : , : , :  |
| 69 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 70 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 71 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| *equality replacement requirements |