| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4 | ⊢  |
| : , : , : , :  |
1 | theorem | | ⊢  |
| proveit.logic.equality.four_chain_transitivity |
2 | instantiation | 5, 6, 7, 8, 25, 9, 10, 11* | ⊢  |
| : , : , : , :  |
3 | instantiation | 12, 13, 38 | ⊢  |
| : , :  |
4 | instantiation | 14, 15 | ⊢  |
| : , :  |
5 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.general_len |
6 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat4 |
7 | instantiation | 32 | ⊢  |
| : , : , : , :  |
8 | instantiation | 32 | ⊢  |
| : , : , : , :  |
9 | instantiation | 16, 71, 26 | ⊢  |
| : , : , :  |
10 | instantiation | 16, 54, 27 | ⊢  |
| : , : , :  |
11 | instantiation | 58, 17, 18 | ⊢  |
| : , : , :  |
12 | theorem | | ⊢  |
| proveit.numbers.addition.commutation |
13 | instantiation | 69, 56, 19 | ⊢  |
| : , : , :  |
14 | theorem | | ⊢  |
| proveit.logic.equality.equals_reversal |
15 | instantiation | 20, 21 | ⊢  |
| : , :  |
16 | theorem | | ⊢  |
| proveit.logic.equality.sub_left_side_into |
17 | instantiation | 22, 23, 24, 25, 26, 27 | ⊢  |
| : , : , : , :  |
18 | instantiation | 58, 28, 29 | ⊢  |
| : , : , :  |
19 | instantiation | 69, 63, 30 | ⊢  |
| : , : , :  |
20 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.range_from1_len |
21 | instantiation | 31, 54, 51 | ⊢  |
| : , :  |
22 | axiom | | ⊢  |
| proveit.core_expr_types.operations.operands_substitution |
23 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat4 |
24 | instantiation | 32 | ⊢  |
| : , : , : , :  |
25 | instantiation | 32 | ⊢  |
| : , : , : , :  |
26 | instantiation | 33, 49, 35 | ⊢  |
| : , : , :  |
27 | instantiation | 34, 49, 38, 35 | ⊢  |
| : , : , :  |
28 | instantiation | 36, 46, 71, 45, 48, 47, 49, 38 | ⊢  |
| : , : , : , : , : , : , :  |
29 | instantiation | 44, 45, 51, 71, 47, 37, 49, 38, 39* | ⊢  |
| : , : , : , : , : , :  |
30 | instantiation | 69, 67, 40 | ⊢  |
| : , : , :  |
31 | theorem | | ⊢  |
| proveit.numbers.addition.add_nat_closure_bin |
32 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
33 | theorem | | ⊢  |
| proveit.numbers.addition.subtraction.add_cancel_triple_12 |
34 | theorem | | ⊢  |
| proveit.numbers.addition.subtraction.add_cancel_triple_32 |
35 | instantiation | 41 | ⊢  |
| :  |
36 | theorem | | ⊢  |
| proveit.numbers.addition.leftward_commutation |
37 | instantiation | 42 | ⊢  |
| : , : , :  |
38 | instantiation | 69, 56, 43 | ⊢  |
| : , : , :  |
39 | instantiation | 44, 45, 46, 71, 47, 48, 49, 50* | ⊢  |
| : , : , : , : , : , :  |
40 | instantiation | 69, 70, 51 | ⊢  |
| : , : , :  |
41 | axiom | | ⊢  |
| proveit.logic.equality.equals_reflexivity |
42 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
43 | instantiation | 52, 53, 54 | ⊢  |
| : , : , :  |
44 | theorem | | ⊢  |
| proveit.numbers.addition.association |
45 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
46 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
47 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
48 | instantiation | 55 | ⊢  |
| : , :  |
49 | instantiation | 69, 56, 57 | ⊢  |
| : , : , :  |
50 | instantiation | 58, 59, 60 | ⊢  |
| : , : , :  |
51 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat3 |
52 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.unfold_subset_eq |
53 | instantiation | 61, 62 | ⊢  |
| : , :  |
54 | assumption | | ⊢  |
55 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
56 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
57 | instantiation | 69, 63, 64 | ⊢  |
| : , : , :  |
58 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
59 | instantiation | 65, 66 | ⊢  |
| : , : , :  |
60 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_2_1 |
61 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.relax_proper_subset |
62 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.nat_within_real |
63 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
64 | instantiation | 69, 67, 68 | ⊢  |
| : , : , :  |
65 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
66 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_1_1 |
67 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
68 | instantiation | 69, 70, 71 | ⊢  |
| : , : , :  |
69 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
70 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
71 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |