logo

Expression of type ExprTuple

from the theory of proveit.numbers.absolute_value

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, r, theta
from proveit.numbers import Exp, Mult, Neg, e, i
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Exp(e, Neg(Mult(theta, i)))
expr = ExprTuple(Mult(Neg(r), sub_expr1), Neg(Mult(r, sub_expr1)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(-r\right) \cdot \mathsf{e}^{-\left(\theta \cdot \mathsf{i}\right)}, -\left(r \cdot \mathsf{e}^{-\left(\theta \cdot \mathsf{i}\right)}\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 18
operands: 3
2Operationoperator: 15
operand: 6
3ExprTuple5, 10
4ExprTuple6
5Operationoperator: 15
operand: 9
6Operationoperator: 18
operands: 8
7ExprTuple9
8ExprTuple9, 10
9Variable
10Operationoperator: 11
operands: 12
11Literal
12ExprTuple13, 14
13Literal
14Operationoperator: 15
operand: 17
15Literal
16ExprTuple17
17Operationoperator: 18
operands: 19
18Literal
19ExprTuple20, 21
20Variable
21Literal