logo

Expression of type Neg

from the theory of proveit.numbers.absolute_value

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import r, theta
from proveit.numbers import Exp, Mult, Neg, e, i
In [2]:
# build up the expression from sub-expressions
expr = Neg(Mult(r, Exp(e, Neg(Mult(theta, i)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
-\left(r \cdot \mathsf{e}^{-\left(\theta \cdot \mathsf{i}\right)}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
notation_in_addWhen contained in an Add, use 'subtraction' or 'explicit_negation': For example, 'a - b' versus 'a + (-b)'.subtractionsubtraction('with_subtraction_notation', 'without_subtraction_notation')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 10
operand: 2
1ExprTuple2
2Operationoperator: 13
operands: 3
3ExprTuple4, 5
4Variable
5Operationoperator: 6
operands: 7
6Literal
7ExprTuple8, 9
8Literal
9Operationoperator: 10
operand: 12
10Literal
11ExprTuple12
12Operationoperator: 13
operands: 14
13Literal
14ExprTuple15, 16
15Variable
16Literal