logo

Expression of type ExprTuple

from the theory of proveit.numbers.absolute_value

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, r, theta
from proveit.numbers import Exp, Mult, Neg, e, i
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Mult(r, Exp(e, Neg(Mult(theta, i)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(r \cdot \mathsf{e}^{-\left(\theta \cdot \mathsf{i}\right)}\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Operationoperator: 12
operands: 2
2ExprTuple3, 4
3Variable
4Operationoperator: 5
operands: 6
5Literal
6ExprTuple7, 8
7Literal
8Operationoperator: 9
operand: 11
9Literal
10ExprTuple11
11Operationoperator: 12
operands: 13
12Literal
13ExprTuple14, 15
14Variable
15Literal