| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4* | ⊢  |
| : , : , :  |
1 | theorem | | ⊢  |
| proveit.logic.sets.enumeration.nonmembership_equiv |
2 | reference | 91 | ⊢  |
3 | reference | 34 | ⊢  |
4 | instantiation | 45, 5, 6 | ⊢  |
| : , : , :  |
5 | instantiation | 7, 91, 8, 18, 9, 10, 11 | ⊢  |
| : , : , : , :  |
6 | instantiation | 21, 12 | ⊢  |
| :  |
7 | axiom | | ⊢  |
| proveit.core_expr_types.operations.operands_substitution |
8 | instantiation | 48 | ⊢  |
| : , : , :  |
9 | instantiation | 15, 13* | ⊢  |
| : , :  |
10 | instantiation | 15, 14* | ⊢  |
| : , :  |
11 | instantiation | 15, 16* | ⊢  |
| : , :  |
12 | instantiation | 17, 91, 18, 19 | ⊢  |
| : , :  |
13 | instantiation | 45, 20, 24 | ⊢  |
| : , : , :  |
14 | instantiation | 21, 22 | ⊢  |
| :  |
15 | axiom | | ⊢  |
| proveit.logic.equality.not_equals_def |
16 | instantiation | 45, 23, 24 | ⊢  |
| : , : , :  |
17 | theorem | | ⊢  |
| proveit.logic.booleans.conjunction.and_if_all |
18 | instantiation | 48 | ⊢  |
| : , : , :  |
19 | axiom | | ⊢  |
| proveit.logic.booleans.true_axiom |
20 | instantiation | 54, 25 | ⊢  |
| : , : , :  |
21 | axiom | | ⊢  |
| proveit.logic.booleans.eq_true_intro |
22 | instantiation | 36, 26 | ⊢  |
| : , :  |
23 | instantiation | 54, 27 | ⊢  |
| : , : , :  |
24 | axiom | | ⊢  |
| proveit.logic.booleans.negation.not_f |
25 | instantiation | 31, 28 | ⊢  |
| :  |
26 | instantiation | 29, 92, 30 | ⊢  |
| : , : , : , : , :  |
27 | instantiation | 31, 32 | ⊢  |
| :  |
28 | instantiation | 36, 42 | ⊢  |
| : , :  |
29 | theorem | | ⊢  |
| proveit.logic.booleans.conjunction.any_from_and |
30 | instantiation | 33, 91, 34, 35 | ⊢  |
| : , : , :  |
31 | axiom | | ⊢  |
| proveit.logic.booleans.negation.negation_elim |
32 | instantiation | 36, 43 | ⊢  |
| : , :  |
33 | theorem | | ⊢  |
| proveit.logic.sets.enumeration.nonmembership_unfold |
34 | instantiation | 48 | ⊢  |
| : , : , :  |
35 | instantiation | 37, 38, 39 | ⊢  |
| : , : , :  |
36 | theorem | | ⊢  |
| proveit.logic.equality.unfold_not_equals |
37 | theorem | | ⊢  |
| proveit.logic.equality.sub_left_side_into |
38 | instantiation | 40, 91, 41, 42, 43, 44 | ⊢  |
| : , : , :  |
39 | instantiation | 45, 46, 47 | ⊢  |
| : , : , :  |
40 | theorem | | ⊢  |
| proveit.logic.sets.enumeration.nonmembership_fold |
41 | instantiation | 48 | ⊢  |
| : , : , :  |
42 | instantiation | 49, 50 | ⊢  |
| : , :  |
43 | instantiation | 59, 95, 91, 51 | ⊢  |
| : , :  |
44 | instantiation | 59, 95, 52, 53 | ⊢  |
| : , :  |
45 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
46 | instantiation | 54, 55 | ⊢  |
| : , : , :  |
47 | instantiation | 56, 92, 57, 58 | ⊢  |
| : , : , : , : , : , : , :  |
48 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
49 | theorem | | ⊢  |
| proveit.logic.equality.not_equals_symmetry |
50 | instantiation | 59, 92, 95, 60 | ⊢  |
| : , :  |
51 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.less_2_3 |
52 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat4 |
53 | instantiation | 61, 82, 62, 63, 64*, 65* | ⊢  |
| : , : , :  |
54 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
55 | instantiation | 70, 66, 67 | ⊢  |
| : , : , :  |
56 | theorem | | ⊢  |
| proveit.logic.sets.enumeration.leftward_permutation |
57 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
58 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
59 | theorem | | ⊢  |
| proveit.numbers.ordering.less_is_not_eq_nat |
60 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.less_1_2 |
61 | theorem | | ⊢  |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
62 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
63 | instantiation | 68, 69 | ⊢  |
| :  |
64 | instantiation | 70, 71, 72 | ⊢  |
| : , : , :  |
65 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_2_2 |
66 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_3_1 |
67 | instantiation | 76, 73, 74 | ⊢  |
| : , :  |
68 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
69 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat2 |
70 | theorem | | ⊢  |
| proveit.logic.equality.sub_right_side_into |
71 | instantiation | 75, 77 | ⊢  |
| :  |
72 | instantiation | 76, 77, 78 | ⊢  |
| : , :  |
73 | instantiation | 93, 81, 79 | ⊢  |
| : , : , :  |
74 | instantiation | 93, 81, 80 | ⊢  |
| : , : , :  |
75 | theorem | | ⊢  |
| proveit.numbers.addition.elim_zero_right |
76 | theorem | | ⊢  |
| proveit.numbers.addition.commutation |
77 | instantiation | 93, 81, 82 | ⊢  |
| : , : , :  |
78 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
79 | instantiation | 93, 85, 83 | ⊢  |
| : , : , :  |
80 | instantiation | 93, 85, 84 | ⊢  |
| : , : , :  |
81 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
82 | instantiation | 93, 85, 86 | ⊢  |
| : , : , :  |
83 | instantiation | 93, 89, 87 | ⊢  |
| : , : , :  |
84 | instantiation | 93, 89, 88 | ⊢  |
| : , : , :  |
85 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
86 | instantiation | 93, 89, 90 | ⊢  |
| : , : , :  |
87 | instantiation | 93, 94, 91 | ⊢  |
| : , : , :  |
88 | instantiation | 93, 94, 92 | ⊢  |
| : , : , :  |
89 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
90 | instantiation | 93, 94, 95 | ⊢  |
| : , : , :  |
91 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat3 |
92 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
93 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
94 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
95 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |