logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  : , : , :
1theorem  ⊢  
 proveit.logic.equality.sub_left_side_into
2instantiation4, 55, 5, 6, 7, 8  ⊢  
  : , : , :
3instantiation9, 10, 11  ⊢  
  : , : , :
4theorem  ⊢  
 proveit.logic.sets.enumeration.nonmembership_fold
5instantiation12  ⊢  
  : , : , :
6instantiation13, 14  ⊢  
  : , :
7instantiation23, 59, 55, 15  ⊢  
  : , :
8instantiation23, 59, 16, 17  ⊢  
  : , :
9axiom  ⊢  
 proveit.logic.equality.equals_transitivity
10instantiation18, 19  ⊢  
  : , : , :
11instantiation20, 56, 21, 22  ⊢  
  : , : , : , : , : , : , :
12theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_3_typical_eq
13theorem  ⊢  
 proveit.logic.equality.not_equals_symmetry
14instantiation23, 56, 59, 24  ⊢  
  : , :
15theorem  ⊢  
 proveit.numbers.numerals.decimals.less_2_3
16theorem  ⊢  
 proveit.numbers.numerals.decimals.nat4
17instantiation25, 46, 26, 27, 28*, 29*  ⊢  
  : , : , :
18axiom  ⊢  
 proveit.logic.equality.substitution
19instantiation34, 30, 31  ⊢  
  : , : , :
20theorem  ⊢  
 proveit.logic.sets.enumeration.leftward_permutation
21axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
22theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
23theorem  ⊢  
 proveit.numbers.ordering.less_is_not_eq_nat
24theorem  ⊢  
 proveit.numbers.numerals.decimals.less_1_2
25theorem  ⊢  
 proveit.numbers.addition.strong_bound_via_left_term_bound
26theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
27instantiation32, 33  ⊢  
  :
28instantiation34, 35, 36  ⊢  
  : , : , :
29theorem  ⊢  
 proveit.numbers.numerals.decimals.add_2_2
30theorem  ⊢  
 proveit.numbers.numerals.decimals.add_3_1
31instantiation40, 37, 38  ⊢  
  : , :
32theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos
33theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
34theorem  ⊢  
 proveit.logic.equality.sub_right_side_into
35instantiation39, 41  ⊢  
  :
36instantiation40, 41, 42  ⊢  
  : , :
37instantiation57, 45, 43  ⊢  
  : , : , :
38instantiation57, 45, 44  ⊢  
  : , : , :
39theorem  ⊢  
 proveit.numbers.addition.elim_zero_right
40theorem  ⊢  
 proveit.numbers.addition.commutation
41instantiation57, 45, 46  ⊢  
  : , : , :
42theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.zero_is_complex
43instantiation57, 49, 47  ⊢  
  : , : , :
44instantiation57, 49, 48  ⊢  
  : , : , :
45theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
46instantiation57, 49, 50  ⊢  
  : , : , :
47instantiation57, 53, 51  ⊢  
  : , : , :
48instantiation57, 53, 52  ⊢  
  : , : , :
49theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
50instantiation57, 53, 54  ⊢  
  : , : , :
51instantiation57, 58, 55  ⊢  
  : , : , :
52instantiation57, 58, 56  ⊢  
  : , : , :
53theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
54instantiation57, 58, 59  ⊢  
  : , : , :
55theorem  ⊢  
 proveit.numbers.numerals.decimals.nat3
56theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
57theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
58theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
59theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
*equality replacement requirements