logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2*  ⊢  
  : , :
1axiom  ⊢  
 proveit.logic.equality.not_equals_def
2instantiation3, 4  ⊢  
  :
3axiom  ⊢  
 proveit.logic.booleans.eq_true_intro
4instantiation5, 6  ⊢  
  : , :
5theorem  ⊢  
 proveit.logic.equality.unfold_not_equals
6instantiation7, 67, 8  ⊢  
  : , : , : , : , :
7theorem  ⊢  
 proveit.logic.booleans.conjunction.any_from_and
8instantiation9, 66, 10, 11  ⊢  
  : , : , :
9theorem  ⊢  
 proveit.logic.sets.enumeration.nonmembership_unfold
10instantiation23  ⊢  
  : , : , :
11instantiation12, 13, 14  ⊢  
  : , : , :
12theorem  ⊢  
 proveit.logic.equality.sub_left_side_into
13instantiation15, 66, 16, 17, 18, 19  ⊢  
  : , : , :
14instantiation20, 21, 22  ⊢  
  : , : , :
15theorem  ⊢  
 proveit.logic.sets.enumeration.nonmembership_fold
16instantiation23  ⊢  
  : , : , :
17instantiation24, 25  ⊢  
  : , :
18instantiation34, 70, 66, 26  ⊢  
  : , :
19instantiation34, 70, 27, 28  ⊢  
  : , :
20axiom  ⊢  
 proveit.logic.equality.equals_transitivity
21instantiation29, 30  ⊢  
  : , : , :
22instantiation31, 67, 32, 33  ⊢  
  : , : , : , : , : , : , :
23theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_3_typical_eq
24theorem  ⊢  
 proveit.logic.equality.not_equals_symmetry
25instantiation34, 67, 70, 35  ⊢  
  : , :
26theorem  ⊢  
 proveit.numbers.numerals.decimals.less_2_3
27theorem  ⊢  
 proveit.numbers.numerals.decimals.nat4
28instantiation36, 57, 37, 38, 39*, 40*  ⊢  
  : , : , :
29axiom  ⊢  
 proveit.logic.equality.substitution
30instantiation45, 41, 42  ⊢  
  : , : , :
31theorem  ⊢  
 proveit.logic.sets.enumeration.leftward_permutation
32axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
33theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
34theorem  ⊢  
 proveit.numbers.ordering.less_is_not_eq_nat
35theorem  ⊢  
 proveit.numbers.numerals.decimals.less_1_2
36theorem  ⊢  
 proveit.numbers.addition.strong_bound_via_left_term_bound
37theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
38instantiation43, 44  ⊢  
  :
39instantiation45, 46, 47  ⊢  
  : , : , :
40theorem  ⊢  
 proveit.numbers.numerals.decimals.add_2_2
41theorem  ⊢  
 proveit.numbers.numerals.decimals.add_3_1
42instantiation51, 48, 49  ⊢  
  : , :
43theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos
44theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
45theorem  ⊢  
 proveit.logic.equality.sub_right_side_into
46instantiation50, 52  ⊢  
  :
47instantiation51, 52, 53  ⊢  
  : , :
48instantiation68, 56, 54  ⊢  
  : , : , :
49instantiation68, 56, 55  ⊢  
  : , : , :
50theorem  ⊢  
 proveit.numbers.addition.elim_zero_right
51theorem  ⊢  
 proveit.numbers.addition.commutation
52instantiation68, 56, 57  ⊢  
  : , : , :
53theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.zero_is_complex
54instantiation68, 60, 58  ⊢  
  : , : , :
55instantiation68, 60, 59  ⊢  
  : , : , :
56theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
57instantiation68, 60, 61  ⊢  
  : , : , :
58instantiation68, 64, 62  ⊢  
  : , : , :
59instantiation68, 64, 63  ⊢  
  : , : , :
60theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
61instantiation68, 64, 65  ⊢  
  : , : , :
62instantiation68, 69, 66  ⊢  
  : , : , :
63instantiation68, 69, 67  ⊢  
  : , : , :
64theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
65instantiation68, 69, 70  ⊢  
  : , : , :
66theorem  ⊢  
 proveit.numbers.numerals.decimals.nat3
67theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
68theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
69theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
70theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
*equality replacement requirements