| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | ⊢  |
| | : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.transitivity_subset_eq_subset_eq |
| 2 | instantiation | 4, 108, 112, 5, 6 | ⊢  |
| | : , : , : , :  |
| 3 | instantiation | 7, 8 | ⊢  |
| | : , :  |
| 4 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.subset_eq_of_superset |
| 5 | instantiation | 9 | ⊢  |
| | : , : , :  |
| 6 | instantiation | 10 | ⊢  |
| | : , :  |
| 7 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.relax_proper_subset |
| 8 | instantiation | 11, 12, 13 | ⊢  |
| | : , : , :  |
| 9 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 10 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 11 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 12 | instantiation | 14, 109, 106, 20, 15 | ⊢  |
| | : , : , : , : , :  |
| 13 | instantiation | 16, 109, 106, 17, 20, 18 | ⊢  |
| | : , : , : , : , : , : , :  |
| 14 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.proper_subset_of_superset |
| 15 | instantiation | 19, 109, 20, 21, 22, 23, 24, 25 | ⊢  |
| | : , : , :  |
| 16 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.leftward_permutation |
| 17 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 18 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 19 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.nonmembership_fold |
| 20 | instantiation | 26 | ⊢  |
| | : , : , : , : , :  |
| 21 | instantiation | 31, 27 | ⊢  |
| | : , :  |
| 22 | instantiation | 31, 28 | ⊢  |
| | : , :  |
| 23 | instantiation | 31, 29 | ⊢  |
| | : , :  |
| 24 | instantiation | 31, 30 | ⊢  |
| | : , :  |
| 25 | instantiation | 31, 32 | ⊢  |
| | : , :  |
| 26 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
| 27 | instantiation | 37, 106, 38, 33 | ⊢  |
| | : , :  |
| 28 | instantiation | 37, 112, 38, 34 | ⊢  |
| | : , :  |
| 29 | instantiation | 37, 108, 38, 35 | ⊢  |
| | : , :  |
| 30 | instantiation | 37, 107, 38, 36 | ⊢  |
| | : , :  |
| 31 | theorem | | ⊢  |
| | proveit.logic.equality.not_equals_symmetry |
| 32 | instantiation | 37, 109, 38, 39 | ⊢  |
| | : , :  |
| 33 | instantiation | 51, 88, 52, 40, 41, 42*, 43* | ⊢  |
| | : , : , :  |
| 34 | instantiation | 51, 93, 52, 91, 44, 45*, 76* | ⊢  |
| | : , : , :  |
| 35 | instantiation | 51, 90, 52, 89, 46, 47*, 69* | ⊢  |
| | : , : , :  |
| 36 | instantiation | 51, 89, 52, 90, 48, 49*, 50* | ⊢  |
| | : , : , :  |
| 37 | theorem | | ⊢  |
| | proveit.numbers.ordering.less_is_not_eq_nat |
| 38 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat7 |
| 39 | instantiation | 51, 91, 52, 93, 53, 54*, 55* | ⊢  |
| | : , : , :  |
| 40 | instantiation | 110, 98, 56 | ⊢  |
| | : , : , :  |
| 41 | instantiation | 71, 57 | ⊢  |
| | :  |
| 42 | instantiation | 75, 58, 59 | ⊢  |
| | : , : , :  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_6_1 |
| 44 | instantiation | 71, 60 | ⊢  |
| | :  |
| 45 | instantiation | 75, 61, 62 | ⊢  |
| | : , : , :  |
| 46 | instantiation | 71, 63 | ⊢  |
| | :  |
| 47 | instantiation | 75, 64, 65 | ⊢  |
| | : , : , :  |
| 48 | instantiation | 71, 66 | ⊢  |
| | :  |
| 49 | instantiation | 75, 67, 68 | ⊢  |
| | : , : , :  |
| 50 | instantiation | 75, 69, 70 | ⊢  |
| | : , : , :  |
| 51 | theorem | | ⊢  |
| | proveit.numbers.addition.strong_bound_via_left_term_bound |
| 52 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 53 | instantiation | 71, 72 | ⊢  |
| | :  |
| 54 | instantiation | 75, 73, 74 | ⊢  |
| | : , : , :  |
| 55 | instantiation | 75, 76, 77 | ⊢  |
| | : , : , :  |
| 56 | instantiation | 110, 104, 78 | ⊢  |
| | : , : , :  |
| 57 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat6 |
| 58 | instantiation | 82, 79 | ⊢  |
| | :  |
| 59 | instantiation | 84, 79, 83 | ⊢  |
| | : , :  |
| 60 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat5 |
| 61 | instantiation | 82, 86 | ⊢  |
| | :  |
| 62 | instantiation | 84, 86, 83 | ⊢  |
| | : , :  |
| 63 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat4 |
| 64 | instantiation | 82, 81 | ⊢  |
| | :  |
| 65 | instantiation | 84, 81, 83 | ⊢  |
| | : , :  |
| 66 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 67 | instantiation | 82, 80 | ⊢  |
| | :  |
| 68 | instantiation | 84, 80, 83 | ⊢  |
| | : , :  |
| 69 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_4_3 |
| 70 | instantiation | 84, 80, 81 | ⊢  |
| | : , :  |
| 71 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 72 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 73 | instantiation | 82, 85 | ⊢  |
| | :  |
| 74 | instantiation | 84, 85, 83 | ⊢  |
| | : , :  |
| 75 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 76 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_5_2 |
| 77 | instantiation | 84, 85, 86 | ⊢  |
| | : , :  |
| 78 | instantiation | 110, 111, 87 | ⊢  |
| | : , : , :  |
| 79 | instantiation | 110, 92, 88 | ⊢  |
| | : , : , :  |
| 80 | instantiation | 110, 92, 89 | ⊢  |
| | : , : , :  |
| 81 | instantiation | 110, 92, 90 | ⊢  |
| | : , : , :  |
| 82 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_right |
| 83 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.zero_is_complex |
| 84 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 85 | instantiation | 110, 92, 91 | ⊢  |
| | : , : , :  |
| 86 | instantiation | 110, 92, 93 | ⊢  |
| | : , : , :  |
| 87 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat6 |
| 88 | instantiation | 110, 98, 94 | ⊢  |
| | : , : , :  |
| 89 | instantiation | 110, 98, 95 | ⊢  |
| | : , : , :  |
| 90 | instantiation | 110, 98, 96 | ⊢  |
| | : , : , :  |
| 91 | instantiation | 110, 98, 97 | ⊢  |
| | : , : , :  |
| 92 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 93 | instantiation | 110, 98, 99 | ⊢  |
| | : , : , :  |
| 94 | instantiation | 110, 104, 100 | ⊢  |
| | : , : , :  |
| 95 | instantiation | 110, 104, 101 | ⊢  |
| | : , : , :  |
| 96 | instantiation | 110, 104, 102 | ⊢  |
| | : , : , :  |
| 97 | instantiation | 110, 104, 103 | ⊢  |
| | : , : , :  |
| 98 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 99 | instantiation | 110, 104, 105 | ⊢  |
| | : , : , :  |
| 100 | instantiation | 110, 111, 106 | ⊢  |
| | : , : , :  |
| 101 | instantiation | 110, 111, 107 | ⊢  |
| | : , : , :  |
| 102 | instantiation | 110, 111, 108 | ⊢  |
| | : , : , :  |
| 103 | instantiation | 110, 111, 109 | ⊢  |
| | : , : , :  |
| 104 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 105 | instantiation | 110, 111, 112 | ⊢  |
| | : , : , :  |
| 106 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 107 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 108 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 109 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| 110 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 111 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 112 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| *equality replacement requirements |