| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : , : , : |
1 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.transitivity_subset_eq_subset_eq |
2 | instantiation | 4, 108, 112, 5, 6 | ⊢ |
| : , : , : , : |
3 | instantiation | 7, 8 | ⊢ |
| : , : |
4 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.subset_eq_of_superset |
5 | instantiation | 9 | ⊢ |
| : , : , : |
6 | instantiation | 10 | ⊢ |
| : , : |
7 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
8 | instantiation | 11, 12, 13 | ⊢ |
| : , : , : |
9 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
10 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
11 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
12 | instantiation | 14, 109, 106, 20, 15 | ⊢ |
| : , : , : , : , : |
13 | instantiation | 16, 109, 106, 17, 20, 18 | ⊢ |
| : , : , : , : , : , : , : |
14 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.proper_subset_of_superset |
15 | instantiation | 19, 109, 20, 21, 22, 23, 24, 25 | ⊢ |
| : , : , : |
16 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.leftward_permutation |
17 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
18 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
19 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.nonmembership_fold |
20 | instantiation | 26 | ⊢ |
| : , : , : , : , : |
21 | instantiation | 31, 27 | ⊢ |
| : , : |
22 | instantiation | 31, 28 | ⊢ |
| : , : |
23 | instantiation | 31, 29 | ⊢ |
| : , : |
24 | instantiation | 31, 30 | ⊢ |
| : , : |
25 | instantiation | 31, 32 | ⊢ |
| : , : |
26 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
27 | instantiation | 37, 106, 38, 33 | ⊢ |
| : , : |
28 | instantiation | 37, 112, 38, 34 | ⊢ |
| : , : |
29 | instantiation | 37, 108, 38, 35 | ⊢ |
| : , : |
30 | instantiation | 37, 107, 38, 36 | ⊢ |
| : , : |
31 | theorem | | ⊢ |
| proveit.logic.equality.not_equals_symmetry |
32 | instantiation | 37, 109, 38, 39 | ⊢ |
| : , : |
33 | instantiation | 51, 88, 52, 40, 41, 42*, 43* | ⊢ |
| : , : , : |
34 | instantiation | 51, 93, 52, 91, 44, 45*, 76* | ⊢ |
| : , : , : |
35 | instantiation | 51, 90, 52, 89, 46, 47*, 69* | ⊢ |
| : , : , : |
36 | instantiation | 51, 89, 52, 90, 48, 49*, 50* | ⊢ |
| : , : , : |
37 | theorem | | ⊢ |
| proveit.numbers.ordering.less_is_not_eq_nat |
38 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat7 |
39 | instantiation | 51, 91, 52, 93, 53, 54*, 55* | ⊢ |
| : , : , : |
40 | instantiation | 110, 98, 56 | ⊢ |
| : , : , : |
41 | instantiation | 71, 57 | ⊢ |
| : |
42 | instantiation | 75, 58, 59 | ⊢ |
| : , : , : |
43 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_6_1 |
44 | instantiation | 71, 60 | ⊢ |
| : |
45 | instantiation | 75, 61, 62 | ⊢ |
| : , : , : |
46 | instantiation | 71, 63 | ⊢ |
| : |
47 | instantiation | 75, 64, 65 | ⊢ |
| : , : , : |
48 | instantiation | 71, 66 | ⊢ |
| : |
49 | instantiation | 75, 67, 68 | ⊢ |
| : , : , : |
50 | instantiation | 75, 69, 70 | ⊢ |
| : , : , : |
51 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
52 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
53 | instantiation | 71, 72 | ⊢ |
| : |
54 | instantiation | 75, 73, 74 | ⊢ |
| : , : , : |
55 | instantiation | 75, 76, 77 | ⊢ |
| : , : , : |
56 | instantiation | 110, 104, 78 | ⊢ |
| : , : , : |
57 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat6 |
58 | instantiation | 82, 79 | ⊢ |
| : |
59 | instantiation | 84, 79, 83 | ⊢ |
| : , : |
60 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat5 |
61 | instantiation | 82, 86 | ⊢ |
| : |
62 | instantiation | 84, 86, 83 | ⊢ |
| : , : |
63 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
64 | instantiation | 82, 81 | ⊢ |
| : |
65 | instantiation | 84, 81, 83 | ⊢ |
| : , : |
66 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
67 | instantiation | 82, 80 | ⊢ |
| : |
68 | instantiation | 84, 80, 83 | ⊢ |
| : , : |
69 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_4_3 |
70 | instantiation | 84, 80, 81 | ⊢ |
| : , : |
71 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
72 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
73 | instantiation | 82, 85 | ⊢ |
| : |
74 | instantiation | 84, 85, 83 | ⊢ |
| : , : |
75 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
76 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_5_2 |
77 | instantiation | 84, 85, 86 | ⊢ |
| : , : |
78 | instantiation | 110, 111, 87 | ⊢ |
| : , : , : |
79 | instantiation | 110, 92, 88 | ⊢ |
| : , : , : |
80 | instantiation | 110, 92, 89 | ⊢ |
| : , : , : |
81 | instantiation | 110, 92, 90 | ⊢ |
| : , : , : |
82 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
83 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
84 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
85 | instantiation | 110, 92, 91 | ⊢ |
| : , : , : |
86 | instantiation | 110, 92, 93 | ⊢ |
| : , : , : |
87 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat6 |
88 | instantiation | 110, 98, 94 | ⊢ |
| : , : , : |
89 | instantiation | 110, 98, 95 | ⊢ |
| : , : , : |
90 | instantiation | 110, 98, 96 | ⊢ |
| : , : , : |
91 | instantiation | 110, 98, 97 | ⊢ |
| : , : , : |
92 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
93 | instantiation | 110, 98, 99 | ⊢ |
| : , : , : |
94 | instantiation | 110, 104, 100 | ⊢ |
| : , : , : |
95 | instantiation | 110, 104, 101 | ⊢ |
| : , : , : |
96 | instantiation | 110, 104, 102 | ⊢ |
| : , : , : |
97 | instantiation | 110, 104, 103 | ⊢ |
| : , : , : |
98 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
99 | instantiation | 110, 104, 105 | ⊢ |
| : , : , : |
100 | instantiation | 110, 111, 106 | ⊢ |
| : , : , : |
101 | instantiation | 110, 111, 107 | ⊢ |
| : , : , : |
102 | instantiation | 110, 111, 108 | ⊢ |
| : , : , : |
103 | instantiation | 110, 111, 109 | ⊢ |
| : , : , : |
104 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
105 | instantiation | 110, 111, 112 | ⊢ |
| : , : , : |
106 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
107 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
108 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
109 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
110 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
111 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
112 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |