| step type | requirements | statement |
0 | instantiation | 1, 2 | ⊢ |
| : , : |
1 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
2 | instantiation | 3, 4, 5 | ⊢ |
| : , : , : |
3 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
4 | instantiation | 6, 101, 98, 12, 7 | ⊢ |
| : , : , : , : , : |
5 | instantiation | 8, 101, 98, 9, 12, 10 | ⊢ |
| : , : , : , : , : , : , : |
6 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.proper_subset_of_superset |
7 | instantiation | 11, 101, 12, 13, 14, 15, 16, 17 | ⊢ |
| : , : , : |
8 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.leftward_permutation |
9 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
10 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
11 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.nonmembership_fold |
12 | instantiation | 18 | ⊢ |
| : , : , : , : , : |
13 | instantiation | 23, 19 | ⊢ |
| : , : |
14 | instantiation | 23, 20 | ⊢ |
| : , : |
15 | instantiation | 23, 21 | ⊢ |
| : , : |
16 | instantiation | 23, 22 | ⊢ |
| : , : |
17 | instantiation | 23, 24 | ⊢ |
| : , : |
18 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
19 | instantiation | 29, 98, 30, 25 | ⊢ |
| : , : |
20 | instantiation | 29, 104, 30, 26 | ⊢ |
| : , : |
21 | instantiation | 29, 100, 30, 27 | ⊢ |
| : , : |
22 | instantiation | 29, 99, 30, 28 | ⊢ |
| : , : |
23 | theorem | | ⊢ |
| proveit.logic.equality.not_equals_symmetry |
24 | instantiation | 29, 101, 30, 31 | ⊢ |
| : , : |
25 | instantiation | 43, 80, 44, 32, 33, 34*, 35* | ⊢ |
| : , : , : |
26 | instantiation | 43, 85, 44, 83, 36, 37*, 68* | ⊢ |
| : , : , : |
27 | instantiation | 43, 82, 44, 81, 38, 39*, 61* | ⊢ |
| : , : , : |
28 | instantiation | 43, 81, 44, 82, 40, 41*, 42* | ⊢ |
| : , : , : |
29 | theorem | | ⊢ |
| proveit.numbers.ordering.less_is_not_eq_nat |
30 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat7 |
31 | instantiation | 43, 83, 44, 85, 45, 46*, 47* | ⊢ |
| : , : , : |
32 | instantiation | 102, 90, 48 | ⊢ |
| : , : , : |
33 | instantiation | 63, 49 | ⊢ |
| : |
34 | instantiation | 67, 50, 51 | ⊢ |
| : , : , : |
35 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_6_1 |
36 | instantiation | 63, 52 | ⊢ |
| : |
37 | instantiation | 67, 53, 54 | ⊢ |
| : , : , : |
38 | instantiation | 63, 55 | ⊢ |
| : |
39 | instantiation | 67, 56, 57 | ⊢ |
| : , : , : |
40 | instantiation | 63, 58 | ⊢ |
| : |
41 | instantiation | 67, 59, 60 | ⊢ |
| : , : , : |
42 | instantiation | 67, 61, 62 | ⊢ |
| : , : , : |
43 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
44 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
45 | instantiation | 63, 64 | ⊢ |
| : |
46 | instantiation | 67, 65, 66 | ⊢ |
| : , : , : |
47 | instantiation | 67, 68, 69 | ⊢ |
| : , : , : |
48 | instantiation | 102, 96, 70 | ⊢ |
| : , : , : |
49 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat6 |
50 | instantiation | 74, 71 | ⊢ |
| : |
51 | instantiation | 76, 71, 75 | ⊢ |
| : , : |
52 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat5 |
53 | instantiation | 74, 78 | ⊢ |
| : |
54 | instantiation | 76, 78, 75 | ⊢ |
| : , : |
55 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
56 | instantiation | 74, 73 | ⊢ |
| : |
57 | instantiation | 76, 73, 75 | ⊢ |
| : , : |
58 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
59 | instantiation | 74, 72 | ⊢ |
| : |
60 | instantiation | 76, 72, 75 | ⊢ |
| : , : |
61 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_4_3 |
62 | instantiation | 76, 72, 73 | ⊢ |
| : , : |
63 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
64 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
65 | instantiation | 74, 77 | ⊢ |
| : |
66 | instantiation | 76, 77, 75 | ⊢ |
| : , : |
67 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
68 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_5_2 |
69 | instantiation | 76, 77, 78 | ⊢ |
| : , : |
70 | instantiation | 102, 103, 79 | ⊢ |
| : , : , : |
71 | instantiation | 102, 84, 80 | ⊢ |
| : , : , : |
72 | instantiation | 102, 84, 81 | ⊢ |
| : , : , : |
73 | instantiation | 102, 84, 82 | ⊢ |
| : , : , : |
74 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
75 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
76 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
77 | instantiation | 102, 84, 83 | ⊢ |
| : , : , : |
78 | instantiation | 102, 84, 85 | ⊢ |
| : , : , : |
79 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat6 |
80 | instantiation | 102, 90, 86 | ⊢ |
| : , : , : |
81 | instantiation | 102, 90, 87 | ⊢ |
| : , : , : |
82 | instantiation | 102, 90, 88 | ⊢ |
| : , : , : |
83 | instantiation | 102, 90, 89 | ⊢ |
| : , : , : |
84 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
85 | instantiation | 102, 90, 91 | ⊢ |
| : , : , : |
86 | instantiation | 102, 96, 92 | ⊢ |
| : , : , : |
87 | instantiation | 102, 96, 93 | ⊢ |
| : , : , : |
88 | instantiation | 102, 96, 94 | ⊢ |
| : , : , : |
89 | instantiation | 102, 96, 95 | ⊢ |
| : , : , : |
90 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
91 | instantiation | 102, 96, 97 | ⊢ |
| : , : , : |
92 | instantiation | 102, 103, 98 | ⊢ |
| : , : , : |
93 | instantiation | 102, 103, 99 | ⊢ |
| : , : , : |
94 | instantiation | 102, 103, 100 | ⊢ |
| : , : , : |
95 | instantiation | 102, 103, 101 | ⊢ |
| : , : , : |
96 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
97 | instantiation | 102, 103, 104 | ⊢ |
| : , : , : |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
99 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
100 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
101 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
102 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
103 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
104 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |