| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | ⊢  |
| | : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 2 | instantiation | 4, 99, 96, 10, 5 | ⊢  |
| | : , : , : , : , :  |
| 3 | instantiation | 6, 99, 96, 7, 10, 8 | ⊢  |
| | : , : , : , : , : , : , :  |
| 4 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.proper_subset_of_superset |
| 5 | instantiation | 9, 99, 10, 11, 12, 13, 14, 15 | ⊢  |
| | : , : , :  |
| 6 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.leftward_permutation |
| 7 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 8 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 9 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.nonmembership_fold |
| 10 | instantiation | 16 | ⊢  |
| | : , : , : , : , :  |
| 11 | instantiation | 21, 17 | ⊢  |
| | : , :  |
| 12 | instantiation | 21, 18 | ⊢  |
| | : , :  |
| 13 | instantiation | 21, 19 | ⊢  |
| | : , :  |
| 14 | instantiation | 21, 20 | ⊢  |
| | : , :  |
| 15 | instantiation | 21, 22 | ⊢  |
| | : , :  |
| 16 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
| 17 | instantiation | 27, 96, 28, 23 | ⊢  |
| | : , :  |
| 18 | instantiation | 27, 102, 28, 24 | ⊢  |
| | : , :  |
| 19 | instantiation | 27, 98, 28, 25 | ⊢  |
| | : , :  |
| 20 | instantiation | 27, 97, 28, 26 | ⊢  |
| | : , :  |
| 21 | theorem | | ⊢  |
| | proveit.logic.equality.not_equals_symmetry |
| 22 | instantiation | 27, 99, 28, 29 | ⊢  |
| | : , :  |
| 23 | instantiation | 41, 78, 42, 30, 31, 32*, 33* | ⊢  |
| | : , : , :  |
| 24 | instantiation | 41, 83, 42, 81, 34, 35*, 66* | ⊢  |
| | : , : , :  |
| 25 | instantiation | 41, 80, 42, 79, 36, 37*, 59* | ⊢  |
| | : , : , :  |
| 26 | instantiation | 41, 79, 42, 80, 38, 39*, 40* | ⊢  |
| | : , : , :  |
| 27 | theorem | | ⊢  |
| | proveit.numbers.ordering.less_is_not_eq_nat |
| 28 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat7 |
| 29 | instantiation | 41, 81, 42, 83, 43, 44*, 45* | ⊢  |
| | : , : , :  |
| 30 | instantiation | 100, 88, 46 | ⊢  |
| | : , : , :  |
| 31 | instantiation | 61, 47 | ⊢  |
| | :  |
| 32 | instantiation | 65, 48, 49 | ⊢  |
| | : , : , :  |
| 33 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_6_1 |
| 34 | instantiation | 61, 50 | ⊢  |
| | :  |
| 35 | instantiation | 65, 51, 52 | ⊢  |
| | : , : , :  |
| 36 | instantiation | 61, 53 | ⊢  |
| | :  |
| 37 | instantiation | 65, 54, 55 | ⊢  |
| | : , : , :  |
| 38 | instantiation | 61, 56 | ⊢  |
| | :  |
| 39 | instantiation | 65, 57, 58 | ⊢  |
| | : , : , :  |
| 40 | instantiation | 65, 59, 60 | ⊢  |
| | : , : , :  |
| 41 | theorem | | ⊢  |
| | proveit.numbers.addition.strong_bound_via_left_term_bound |
| 42 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 43 | instantiation | 61, 62 | ⊢  |
| | :  |
| 44 | instantiation | 65, 63, 64 | ⊢  |
| | : , : , :  |
| 45 | instantiation | 65, 66, 67 | ⊢  |
| | : , : , :  |
| 46 | instantiation | 100, 94, 68 | ⊢  |
| | : , : , :  |
| 47 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat6 |
| 48 | instantiation | 72, 69 | ⊢  |
| | :  |
| 49 | instantiation | 74, 69, 73 | ⊢  |
| | : , :  |
| 50 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat5 |
| 51 | instantiation | 72, 76 | ⊢  |
| | :  |
| 52 | instantiation | 74, 76, 73 | ⊢  |
| | : , :  |
| 53 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat4 |
| 54 | instantiation | 72, 71 | ⊢  |
| | :  |
| 55 | instantiation | 74, 71, 73 | ⊢  |
| | : , :  |
| 56 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 57 | instantiation | 72, 70 | ⊢  |
| | :  |
| 58 | instantiation | 74, 70, 73 | ⊢  |
| | : , :  |
| 59 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_4_3 |
| 60 | instantiation | 74, 70, 71 | ⊢  |
| | : , :  |
| 61 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 62 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 63 | instantiation | 72, 75 | ⊢  |
| | :  |
| 64 | instantiation | 74, 75, 73 | ⊢  |
| | : , :  |
| 65 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 66 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_5_2 |
| 67 | instantiation | 74, 75, 76 | ⊢  |
| | : , :  |
| 68 | instantiation | 100, 101, 77 | ⊢  |
| | : , : , :  |
| 69 | instantiation | 100, 82, 78 | ⊢  |
| | : , : , :  |
| 70 | instantiation | 100, 82, 79 | ⊢  |
| | : , : , :  |
| 71 | instantiation | 100, 82, 80 | ⊢  |
| | : , : , :  |
| 72 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_right |
| 73 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.zero_is_complex |
| 74 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 75 | instantiation | 100, 82, 81 | ⊢  |
| | : , : , :  |
| 76 | instantiation | 100, 82, 83 | ⊢  |
| | : , : , :  |
| 77 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat6 |
| 78 | instantiation | 100, 88, 84 | ⊢  |
| | : , : , :  |
| 79 | instantiation | 100, 88, 85 | ⊢  |
| | : , : , :  |
| 80 | instantiation | 100, 88, 86 | ⊢  |
| | : , : , :  |
| 81 | instantiation | 100, 88, 87 | ⊢  |
| | : , : , :  |
| 82 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 83 | instantiation | 100, 88, 89 | ⊢  |
| | : , : , :  |
| 84 | instantiation | 100, 94, 90 | ⊢  |
| | : , : , :  |
| 85 | instantiation | 100, 94, 91 | ⊢  |
| | : , : , :  |
| 86 | instantiation | 100, 94, 92 | ⊢  |
| | : , : , :  |
| 87 | instantiation | 100, 94, 93 | ⊢  |
| | : , : , :  |
| 88 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 89 | instantiation | 100, 94, 95 | ⊢  |
| | : , : , :  |
| 90 | instantiation | 100, 101, 96 | ⊢  |
| | : , : , :  |
| 91 | instantiation | 100, 101, 97 | ⊢  |
| | : , : , :  |
| 92 | instantiation | 100, 101, 98 | ⊢  |
| | : , : , :  |
| 93 | instantiation | 100, 101, 99 | ⊢  |
| | : , : , :  |
| 94 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 95 | instantiation | 100, 101, 102 | ⊢  |
| | : , : , :  |
| 96 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 97 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 98 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 99 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| 100 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 101 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 102 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| *equality replacement requirements |