| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢  |
| : , : , :  |
1 | theorem | | ⊢  |
| proveit.logic.equality.sub_left_side_into |
2 | instantiation | 4, 99, 96, 10, 5 | ⊢  |
| : , : , : , : , :  |
3 | instantiation | 6, 99, 96, 7, 10, 8 | ⊢  |
| : , : , : , : , : , : , :  |
4 | theorem | | ⊢  |
| proveit.logic.sets.enumeration.proper_subset_of_superset |
5 | instantiation | 9, 99, 10, 11, 12, 13, 14, 15 | ⊢  |
| : , : , :  |
6 | theorem | | ⊢  |
| proveit.logic.sets.enumeration.leftward_permutation |
7 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
8 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
9 | theorem | | ⊢  |
| proveit.logic.sets.enumeration.nonmembership_fold |
10 | instantiation | 16 | ⊢  |
| : , : , : , : , :  |
11 | instantiation | 21, 17 | ⊢  |
| : , :  |
12 | instantiation | 21, 18 | ⊢  |
| : , :  |
13 | instantiation | 21, 19 | ⊢  |
| : , :  |
14 | instantiation | 21, 20 | ⊢  |
| : , :  |
15 | instantiation | 21, 22 | ⊢  |
| : , :  |
16 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
17 | instantiation | 27, 96, 28, 23 | ⊢  |
| : , :  |
18 | instantiation | 27, 102, 28, 24 | ⊢  |
| : , :  |
19 | instantiation | 27, 98, 28, 25 | ⊢  |
| : , :  |
20 | instantiation | 27, 97, 28, 26 | ⊢  |
| : , :  |
21 | theorem | | ⊢  |
| proveit.logic.equality.not_equals_symmetry |
22 | instantiation | 27, 99, 28, 29 | ⊢  |
| : , :  |
23 | instantiation | 41, 78, 42, 30, 31, 32*, 33* | ⊢  |
| : , : , :  |
24 | instantiation | 41, 83, 42, 81, 34, 35*, 66* | ⊢  |
| : , : , :  |
25 | instantiation | 41, 80, 42, 79, 36, 37*, 59* | ⊢  |
| : , : , :  |
26 | instantiation | 41, 79, 42, 80, 38, 39*, 40* | ⊢  |
| : , : , :  |
27 | theorem | | ⊢  |
| proveit.numbers.ordering.less_is_not_eq_nat |
28 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat7 |
29 | instantiation | 41, 81, 42, 83, 43, 44*, 45* | ⊢  |
| : , : , :  |
30 | instantiation | 100, 88, 46 | ⊢  |
| : , : , :  |
31 | instantiation | 61, 47 | ⊢  |
| :  |
32 | instantiation | 65, 48, 49 | ⊢  |
| : , : , :  |
33 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_6_1 |
34 | instantiation | 61, 50 | ⊢  |
| :  |
35 | instantiation | 65, 51, 52 | ⊢  |
| : , : , :  |
36 | instantiation | 61, 53 | ⊢  |
| :  |
37 | instantiation | 65, 54, 55 | ⊢  |
| : , : , :  |
38 | instantiation | 61, 56 | ⊢  |
| :  |
39 | instantiation | 65, 57, 58 | ⊢  |
| : , : , :  |
40 | instantiation | 65, 59, 60 | ⊢  |
| : , : , :  |
41 | theorem | | ⊢  |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
42 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
43 | instantiation | 61, 62 | ⊢  |
| :  |
44 | instantiation | 65, 63, 64 | ⊢  |
| : , : , :  |
45 | instantiation | 65, 66, 67 | ⊢  |
| : , : , :  |
46 | instantiation | 100, 94, 68 | ⊢  |
| : , : , :  |
47 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat6 |
48 | instantiation | 72, 69 | ⊢  |
| :  |
49 | instantiation | 74, 69, 73 | ⊢  |
| : , :  |
50 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat5 |
51 | instantiation | 72, 76 | ⊢  |
| :  |
52 | instantiation | 74, 76, 73 | ⊢  |
| : , :  |
53 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat4 |
54 | instantiation | 72, 71 | ⊢  |
| :  |
55 | instantiation | 74, 71, 73 | ⊢  |
| : , :  |
56 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat3 |
57 | instantiation | 72, 70 | ⊢  |
| :  |
58 | instantiation | 74, 70, 73 | ⊢  |
| : , :  |
59 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_4_3 |
60 | instantiation | 74, 70, 71 | ⊢  |
| : , :  |
61 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
62 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat2 |
63 | instantiation | 72, 75 | ⊢  |
| :  |
64 | instantiation | 74, 75, 73 | ⊢  |
| : , :  |
65 | theorem | | ⊢  |
| proveit.logic.equality.sub_right_side_into |
66 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_5_2 |
67 | instantiation | 74, 75, 76 | ⊢  |
| : , :  |
68 | instantiation | 100, 101, 77 | ⊢  |
| : , : , :  |
69 | instantiation | 100, 82, 78 | ⊢  |
| : , : , :  |
70 | instantiation | 100, 82, 79 | ⊢  |
| : , : , :  |
71 | instantiation | 100, 82, 80 | ⊢  |
| : , : , :  |
72 | theorem | | ⊢  |
| proveit.numbers.addition.elim_zero_right |
73 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
74 | theorem | | ⊢  |
| proveit.numbers.addition.commutation |
75 | instantiation | 100, 82, 81 | ⊢  |
| : , : , :  |
76 | instantiation | 100, 82, 83 | ⊢  |
| : , : , :  |
77 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat6 |
78 | instantiation | 100, 88, 84 | ⊢  |
| : , : , :  |
79 | instantiation | 100, 88, 85 | ⊢  |
| : , : , :  |
80 | instantiation | 100, 88, 86 | ⊢  |
| : , : , :  |
81 | instantiation | 100, 88, 87 | ⊢  |
| : , : , :  |
82 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
83 | instantiation | 100, 88, 89 | ⊢  |
| : , : , :  |
84 | instantiation | 100, 94, 90 | ⊢  |
| : , : , :  |
85 | instantiation | 100, 94, 91 | ⊢  |
| : , : , :  |
86 | instantiation | 100, 94, 92 | ⊢  |
| : , : , :  |
87 | instantiation | 100, 94, 93 | ⊢  |
| : , : , :  |
88 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
89 | instantiation | 100, 94, 95 | ⊢  |
| : , : , :  |
90 | instantiation | 100, 101, 96 | ⊢  |
| : , : , :  |
91 | instantiation | 100, 101, 97 | ⊢  |
| : , : , :  |
92 | instantiation | 100, 101, 98 | ⊢  |
| : , : , :  |
93 | instantiation | 100, 101, 99 | ⊢  |
| : , : , :  |
94 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
95 | instantiation | 100, 101, 102 | ⊢  |
| : , : , :  |
96 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
97 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat4 |
98 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat3 |
99 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat5 |
100 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
101 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
102 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |