| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : , : , : |
1 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.transitivity_subset_subset |
2 | instantiation | 6, 4, 5 | ⊢ |
| : , : , : |
3 | instantiation | 6, 7, 8 | ⊢ |
| : , : , : |
4 | instantiation | 10, 119, 117, 15, 9 | ⊢ |
| : , : , : , : , : |
5 | instantiation | 12, 119, 117, 13, 15, 14 | ⊢ |
| : , : , : , : , : , : , : |
6 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
7 | instantiation | 10, 120, 117, 20, 11 | ⊢ |
| : , : , : , : , : |
8 | instantiation | 12, 120, 117, 13, 20, 14 | ⊢ |
| : , : , : , : , : , : , : |
9 | instantiation | 19, 119, 15, 16, 17, 18 | ⊢ |
| : , : , : |
10 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.proper_subset_of_superset |
11 | instantiation | 19, 120, 20, 21, 22, 23, 24, 25 | ⊢ |
| : , : , : |
12 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.leftward_permutation |
13 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
14 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
15 | instantiation | 26 | ⊢ |
| : , : , : |
16 | instantiation | 35, 27 | ⊢ |
| : , : |
17 | instantiation | 35, 28 | ⊢ |
| : , : |
18 | instantiation | 35, 29 | ⊢ |
| : , : |
19 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.nonmembership_fold |
20 | instantiation | 30 | ⊢ |
| : , : , : , : , : |
21 | instantiation | 35, 31 | ⊢ |
| : , : |
22 | instantiation | 35, 32 | ⊢ |
| : , : |
23 | instantiation | 35, 33 | ⊢ |
| : , : |
24 | instantiation | 35, 34 | ⊢ |
| : , : |
25 | instantiation | 35, 36 | ⊢ |
| : , : |
26 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
27 | instantiation | 44, 117, 120, 37 | ⊢ |
| : , : |
28 | instantiation | 44, 123, 120, 38 | ⊢ |
| : , : |
29 | instantiation | 44, 119, 120, 39 | ⊢ |
| : , : |
30 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
31 | instantiation | 44, 117, 45, 40 | ⊢ |
| : , : |
32 | instantiation | 44, 123, 45, 41 | ⊢ |
| : , : |
33 | instantiation | 44, 119, 45, 42 | ⊢ |
| : , : |
34 | instantiation | 44, 118, 45, 43 | ⊢ |
| : , : |
35 | theorem | | ⊢ |
| proveit.logic.equality.not_equals_symmetry |
36 | instantiation | 44, 120, 45, 46 | ⊢ |
| : , : |
37 | instantiation | 60, 99, 61, 100, 55, 51*, 47* | ⊢ |
| : , : , : |
38 | instantiation | 60, 104, 61, 101, 57, 54*, 48* | ⊢ |
| : , : , : |
39 | instantiation | 60, 101, 61, 104, 62, 56*, 65* | ⊢ |
| : , : , : |
40 | instantiation | 60, 99, 61, 49, 50, 51*, 52* | ⊢ |
| : , : , : |
41 | instantiation | 60, 104, 61, 102, 53, 54*, 87* | ⊢ |
| : , : , : |
42 | instantiation | 60, 101, 61, 100, 55, 56*, 80* | ⊢ |
| : , : , : |
43 | instantiation | 60, 100, 61, 101, 57, 58*, 59* | ⊢ |
| : , : , : |
44 | theorem | | ⊢ |
| proveit.numbers.ordering.less_is_not_eq_nat |
45 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat7 |
46 | instantiation | 60, 102, 61, 104, 62, 63*, 64* | ⊢ |
| : , : , : |
47 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_4_1 |
48 | instantiation | 86, 65, 66 | ⊢ |
| : , : , : |
49 | instantiation | 121, 109, 67 | ⊢ |
| : , : , : |
50 | instantiation | 82, 68 | ⊢ |
| : |
51 | instantiation | 86, 69, 70 | ⊢ |
| : , : , : |
52 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_6_1 |
53 | instantiation | 82, 71 | ⊢ |
| : |
54 | instantiation | 86, 72, 73 | ⊢ |
| : , : , : |
55 | instantiation | 82, 74 | ⊢ |
| : |
56 | instantiation | 86, 75, 76 | ⊢ |
| : , : , : |
57 | instantiation | 82, 77 | ⊢ |
| : |
58 | instantiation | 86, 78, 79 | ⊢ |
| : , : , : |
59 | instantiation | 86, 80, 81 | ⊢ |
| : , : , : |
60 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
61 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
62 | instantiation | 82, 83 | ⊢ |
| : |
63 | instantiation | 86, 84, 85 | ⊢ |
| : , : , : |
64 | instantiation | 86, 87, 88 | ⊢ |
| : , : , : |
65 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_3 |
66 | instantiation | 95, 97, 92 | ⊢ |
| : , : |
67 | instantiation | 121, 115, 89 | ⊢ |
| : , : , : |
68 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat6 |
69 | instantiation | 93, 90 | ⊢ |
| : |
70 | instantiation | 95, 90, 94 | ⊢ |
| : , : |
71 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat5 |
72 | instantiation | 93, 97 | ⊢ |
| : |
73 | instantiation | 95, 97, 94 | ⊢ |
| : , : |
74 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
75 | instantiation | 93, 92 | ⊢ |
| : |
76 | instantiation | 95, 92, 94 | ⊢ |
| : , : |
77 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
78 | instantiation | 93, 91 | ⊢ |
| : |
79 | instantiation | 95, 91, 94 | ⊢ |
| : , : |
80 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_4_3 |
81 | instantiation | 95, 91, 92 | ⊢ |
| : , : |
82 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
83 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
84 | instantiation | 93, 96 | ⊢ |
| : |
85 | instantiation | 95, 96, 94 | ⊢ |
| : , : |
86 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
87 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_5_2 |
88 | instantiation | 95, 96, 97 | ⊢ |
| : , : |
89 | instantiation | 121, 122, 98 | ⊢ |
| : , : , : |
90 | instantiation | 121, 103, 99 | ⊢ |
| : , : , : |
91 | instantiation | 121, 103, 100 | ⊢ |
| : , : , : |
92 | instantiation | 121, 103, 101 | ⊢ |
| : , : , : |
93 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
94 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
95 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
96 | instantiation | 121, 103, 102 | ⊢ |
| : , : , : |
97 | instantiation | 121, 103, 104 | ⊢ |
| : , : , : |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat6 |
99 | instantiation | 121, 109, 105 | ⊢ |
| : , : , : |
100 | instantiation | 121, 109, 106 | ⊢ |
| : , : , : |
101 | instantiation | 121, 109, 107 | ⊢ |
| : , : , : |
102 | instantiation | 121, 109, 108 | ⊢ |
| : , : , : |
103 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
104 | instantiation | 121, 109, 110 | ⊢ |
| : , : , : |
105 | instantiation | 121, 115, 111 | ⊢ |
| : , : , : |
106 | instantiation | 121, 115, 112 | ⊢ |
| : , : , : |
107 | instantiation | 121, 115, 113 | ⊢ |
| : , : , : |
108 | instantiation | 121, 115, 114 | ⊢ |
| : , : , : |
109 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
110 | instantiation | 121, 115, 116 | ⊢ |
| : , : , : |
111 | instantiation | 121, 122, 117 | ⊢ |
| : , : , : |
112 | instantiation | 121, 122, 118 | ⊢ |
| : , : , : |
113 | instantiation | 121, 122, 119 | ⊢ |
| : , : , : |
114 | instantiation | 121, 122, 120 | ⊢ |
| : , : , : |
115 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
116 | instantiation | 121, 122, 123 | ⊢ |
| : , : , : |
117 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
118 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
119 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
120 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
121 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
122 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
123 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |