| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | ⊢  |
| | : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.transitivity_subset_subset |
| 2 | instantiation | 6, 4, 5 | ⊢  |
| | : , : , :  |
| 3 | instantiation | 6, 7, 8 | ⊢  |
| | : , : , :  |
| 4 | instantiation | 10, 119, 117, 15, 9 | ⊢  |
| | : , : , : , : , :  |
| 5 | instantiation | 12, 119, 117, 13, 15, 14 | ⊢  |
| | : , : , : , : , : , : , :  |
| 6 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 7 | instantiation | 10, 120, 117, 20, 11 | ⊢  |
| | : , : , : , : , :  |
| 8 | instantiation | 12, 120, 117, 13, 20, 14 | ⊢  |
| | : , : , : , : , : , : , :  |
| 9 | instantiation | 19, 119, 15, 16, 17, 18 | ⊢  |
| | : , : , :  |
| 10 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.proper_subset_of_superset |
| 11 | instantiation | 19, 120, 20, 21, 22, 23, 24, 25 | ⊢  |
| | : , : , :  |
| 12 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.leftward_permutation |
| 13 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 14 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 15 | instantiation | 26 | ⊢  |
| | : , : , :  |
| 16 | instantiation | 35, 27 | ⊢  |
| | : , :  |
| 17 | instantiation | 35, 28 | ⊢  |
| | : , :  |
| 18 | instantiation | 35, 29 | ⊢  |
| | : , :  |
| 19 | theorem | | ⊢  |
| | proveit.logic.sets.enumeration.nonmembership_fold |
| 20 | instantiation | 30 | ⊢  |
| | : , : , : , : , :  |
| 21 | instantiation | 35, 31 | ⊢  |
| | : , :  |
| 22 | instantiation | 35, 32 | ⊢  |
| | : , :  |
| 23 | instantiation | 35, 33 | ⊢  |
| | : , :  |
| 24 | instantiation | 35, 34 | ⊢  |
| | : , :  |
| 25 | instantiation | 35, 36 | ⊢  |
| | : , :  |
| 26 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 27 | instantiation | 44, 117, 120, 37 | ⊢  |
| | : , :  |
| 28 | instantiation | 44, 123, 120, 38 | ⊢  |
| | : , :  |
| 29 | instantiation | 44, 119, 120, 39 | ⊢  |
| | : , :  |
| 30 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
| 31 | instantiation | 44, 117, 45, 40 | ⊢  |
| | : , :  |
| 32 | instantiation | 44, 123, 45, 41 | ⊢  |
| | : , :  |
| 33 | instantiation | 44, 119, 45, 42 | ⊢  |
| | : , :  |
| 34 | instantiation | 44, 118, 45, 43 | ⊢  |
| | : , :  |
| 35 | theorem | | ⊢  |
| | proveit.logic.equality.not_equals_symmetry |
| 36 | instantiation | 44, 120, 45, 46 | ⊢  |
| | : , :  |
| 37 | instantiation | 60, 99, 61, 100, 55, 51*, 47* | ⊢  |
| | : , : , :  |
| 38 | instantiation | 60, 104, 61, 101, 57, 54*, 48* | ⊢  |
| | : , : , :  |
| 39 | instantiation | 60, 101, 61, 104, 62, 56*, 65* | ⊢  |
| | : , : , :  |
| 40 | instantiation | 60, 99, 61, 49, 50, 51*, 52* | ⊢  |
| | : , : , :  |
| 41 | instantiation | 60, 104, 61, 102, 53, 54*, 87* | ⊢  |
| | : , : , :  |
| 42 | instantiation | 60, 101, 61, 100, 55, 56*, 80* | ⊢  |
| | : , : , :  |
| 43 | instantiation | 60, 100, 61, 101, 57, 58*, 59* | ⊢  |
| | : , : , :  |
| 44 | theorem | | ⊢  |
| | proveit.numbers.ordering.less_is_not_eq_nat |
| 45 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat7 |
| 46 | instantiation | 60, 102, 61, 104, 62, 63*, 64* | ⊢  |
| | : , : , :  |
| 47 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_4_1 |
| 48 | instantiation | 86, 65, 66 | ⊢  |
| | : , : , :  |
| 49 | instantiation | 121, 109, 67 | ⊢  |
| | : , : , :  |
| 50 | instantiation | 82, 68 | ⊢  |
| | :  |
| 51 | instantiation | 86, 69, 70 | ⊢  |
| | : , : , :  |
| 52 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_6_1 |
| 53 | instantiation | 82, 71 | ⊢  |
| | :  |
| 54 | instantiation | 86, 72, 73 | ⊢  |
| | : , : , :  |
| 55 | instantiation | 82, 74 | ⊢  |
| | :  |
| 56 | instantiation | 86, 75, 76 | ⊢  |
| | : , : , :  |
| 57 | instantiation | 82, 77 | ⊢  |
| | :  |
| 58 | instantiation | 86, 78, 79 | ⊢  |
| | : , : , :  |
| 59 | instantiation | 86, 80, 81 | ⊢  |
| | : , : , :  |
| 60 | theorem | | ⊢  |
| | proveit.numbers.addition.strong_bound_via_left_term_bound |
| 61 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 62 | instantiation | 82, 83 | ⊢  |
| | :  |
| 63 | instantiation | 86, 84, 85 | ⊢  |
| | : , : , :  |
| 64 | instantiation | 86, 87, 88 | ⊢  |
| | : , : , :  |
| 65 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_2_3 |
| 66 | instantiation | 95, 97, 92 | ⊢  |
| | : , :  |
| 67 | instantiation | 121, 115, 89 | ⊢  |
| | : , : , :  |
| 68 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat6 |
| 69 | instantiation | 93, 90 | ⊢  |
| | :  |
| 70 | instantiation | 95, 90, 94 | ⊢  |
| | : , :  |
| 71 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat5 |
| 72 | instantiation | 93, 97 | ⊢  |
| | :  |
| 73 | instantiation | 95, 97, 94 | ⊢  |
| | : , :  |
| 74 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat4 |
| 75 | instantiation | 93, 92 | ⊢  |
| | :  |
| 76 | instantiation | 95, 92, 94 | ⊢  |
| | : , :  |
| 77 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 78 | instantiation | 93, 91 | ⊢  |
| | :  |
| 79 | instantiation | 95, 91, 94 | ⊢  |
| | : , :  |
| 80 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_4_3 |
| 81 | instantiation | 95, 91, 92 | ⊢  |
| | : , :  |
| 82 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 83 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 84 | instantiation | 93, 96 | ⊢  |
| | :  |
| 85 | instantiation | 95, 96, 94 | ⊢  |
| | : , :  |
| 86 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 87 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_5_2 |
| 88 | instantiation | 95, 96, 97 | ⊢  |
| | : , :  |
| 89 | instantiation | 121, 122, 98 | ⊢  |
| | : , : , :  |
| 90 | instantiation | 121, 103, 99 | ⊢  |
| | : , : , :  |
| 91 | instantiation | 121, 103, 100 | ⊢  |
| | : , : , :  |
| 92 | instantiation | 121, 103, 101 | ⊢  |
| | : , : , :  |
| 93 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_right |
| 94 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.zero_is_complex |
| 95 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 96 | instantiation | 121, 103, 102 | ⊢  |
| | : , : , :  |
| 97 | instantiation | 121, 103, 104 | ⊢  |
| | : , : , :  |
| 98 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat6 |
| 99 | instantiation | 121, 109, 105 | ⊢  |
| | : , : , :  |
| 100 | instantiation | 121, 109, 106 | ⊢  |
| | : , : , :  |
| 101 | instantiation | 121, 109, 107 | ⊢  |
| | : , : , :  |
| 102 | instantiation | 121, 109, 108 | ⊢  |
| | : , : , :  |
| 103 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 104 | instantiation | 121, 109, 110 | ⊢  |
| | : , : , :  |
| 105 | instantiation | 121, 115, 111 | ⊢  |
| | : , : , :  |
| 106 | instantiation | 121, 115, 112 | ⊢  |
| | : , : , :  |
| 107 | instantiation | 121, 115, 113 | ⊢  |
| | : , : , :  |
| 108 | instantiation | 121, 115, 114 | ⊢  |
| | : , : , :  |
| 109 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 110 | instantiation | 121, 115, 116 | ⊢  |
| | : , : , :  |
| 111 | instantiation | 121, 122, 117 | ⊢  |
| | : , : , :  |
| 112 | instantiation | 121, 122, 118 | ⊢  |
| | : , : , :  |
| 113 | instantiation | 121, 122, 119 | ⊢  |
| | : , : , :  |
| 114 | instantiation | 121, 122, 120 | ⊢  |
| | : , : , :  |
| 115 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 116 | instantiation | 121, 122, 123 | ⊢  |
| | : , : , :  |
| 117 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 118 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 119 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 120 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| 121 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 122 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 123 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| *equality replacement requirements |