| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : , : , : |
1 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
2 | instantiation | 4, 73, 69, 10, 5 | ⊢ |
| : , : , : , : , : |
3 | instantiation | 6, 73, 69, 7, 10, 8 | ⊢ |
| : , : , : , : , : , : , : |
4 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.proper_subset_of_superset |
5 | instantiation | 9, 73, 10, 11, 12, 13 | ⊢ |
| : , : , : |
6 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.leftward_permutation |
7 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
8 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
9 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.nonmembership_fold |
10 | instantiation | 14 | ⊢ |
| : , : , : |
11 | instantiation | 17, 15 | ⊢ |
| : , : |
12 | instantiation | 17, 16 | ⊢ |
| : , : |
13 | instantiation | 17, 18 | ⊢ |
| : , : |
14 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
15 | instantiation | 21, 69, 22, 19 | ⊢ |
| : , : |
16 | instantiation | 21, 70, 22, 20 | ⊢ |
| : , : |
17 | theorem | | ⊢ |
| proveit.logic.equality.not_equals_symmetry |
18 | instantiation | 21, 73, 22, 23 | ⊢ |
| : , : |
19 | instantiation | 31, 57, 32, 24, 25, 26*, 27* | ⊢ |
| : , : , : |
20 | instantiation | 31, 58, 32, 60, 28, 29*, 30* | ⊢ |
| : , : , : |
21 | theorem | | ⊢ |
| proveit.numbers.ordering.less_is_not_eq_nat |
22 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
23 | instantiation | 31, 60, 32, 58, 33, 34*, 42* | ⊢ |
| : , : , : |
24 | instantiation | 71, 63, 35 | ⊢ |
| : , : , : |
25 | instantiation | 44, 36 | ⊢ |
| : |
26 | instantiation | 46, 37, 38 | ⊢ |
| : , : , : |
27 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_4_1 |
28 | instantiation | 44, 39 | ⊢ |
| : |
29 | instantiation | 46, 40, 41 | ⊢ |
| : , : , : |
30 | instantiation | 46, 42, 43 | ⊢ |
| : , : , : |
31 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
32 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
33 | instantiation | 44, 45 | ⊢ |
| : |
34 | instantiation | 46, 47, 48 | ⊢ |
| : , : , : |
35 | instantiation | 71, 67, 49 | ⊢ |
| : , : , : |
36 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
37 | instantiation | 52, 50 | ⊢ |
| : |
38 | instantiation | 53, 50, 55 | ⊢ |
| : , : |
39 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
40 | instantiation | 52, 51 | ⊢ |
| : |
41 | instantiation | 53, 51, 55 | ⊢ |
| : , : |
42 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_3 |
43 | instantiation | 53, 51, 54 | ⊢ |
| : , : |
44 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
45 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
46 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
47 | instantiation | 52, 54 | ⊢ |
| : |
48 | instantiation | 53, 54, 55 | ⊢ |
| : , : |
49 | instantiation | 71, 72, 56 | ⊢ |
| : , : , : |
50 | instantiation | 71, 59, 57 | ⊢ |
| : , : , : |
51 | instantiation | 71, 59, 58 | ⊢ |
| : , : , : |
52 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
53 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
54 | instantiation | 71, 59, 60 | ⊢ |
| : , : , : |
55 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
56 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
57 | instantiation | 71, 63, 61 | ⊢ |
| : , : , : |
58 | instantiation | 71, 63, 62 | ⊢ |
| : , : , : |
59 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
60 | instantiation | 71, 63, 64 | ⊢ |
| : , : , : |
61 | instantiation | 71, 67, 65 | ⊢ |
| : , : , : |
62 | instantiation | 71, 67, 66 | ⊢ |
| : , : , : |
63 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
64 | instantiation | 71, 67, 68 | ⊢ |
| : , : , : |
65 | instantiation | 71, 72, 69 | ⊢ |
| : , : , : |
66 | instantiation | 71, 72, 70 | ⊢ |
| : , : , : |
67 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
68 | instantiation | 71, 72, 73 | ⊢ |
| : , : , : |
69 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
70 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
71 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
72 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
73 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
*equality replacement requirements |