logo
In [1]:
import proveit
from proveit.numbers import num
from proveit import A, B, m
from proveit.logic.booleans.conjunction  import multi_conjunction_def
theory = proveit.Theory() # the theorem's theory
In [2]:
%proving unary_and_reduction_lemma
With these allowed/disallowed theorem/theory presumptions (e.g., to avoid circular dependencies), we begin our proof of
unary_and_reduction_lemma:
(see dependencies)
In [3]:
multi_conjunction_def
In [4]:
multi_conjunction_def.instantiate({m:num(0), A:(), B:A})
unary_and_reduction_lemma may now be readily provable (assuming required theorems are usable).  Simply execute "%qed".
In [5]:
%qed
proveit.logic.booleans.conjunction.unary_and_reduction_lemma has been proven.