logo
In [1]:
import proveit
from proveit.logic.booleans.conjunction  import empty_conjunction
theory = proveit.Theory() # the theorem's theory
In [2]:
%proving empty_conjunction_eval
With these allowed/disallowed theorem/theory presumptions (e.g., to avoid circular dependencies), we begin our proof of
empty_conjunction_eval:
(see dependencies)
empty_conjunction_eval may now be readily provable (assuming required theorems are usable).  Simply execute "%qed".
In [3]:
empty_conjunction.evaluation()
In [4]:
%qed
proveit.logic.booleans.conjunction.empty_conjunction_eval has been proven.
Out[4]: