import proveit
# Prepare this notebook for defining the axioms of a theory:
%axioms_notebook # Keep this at the top following 'import proveit'.
from proveit.logic import Equals, And, TRUE, FALSE, Forall, in_bool
from proveit import A, B, m, n
from proveit.core_expr_types import A_1_to_m
from proveit.numbers import Natural
%begin axioms
and_t_t = Equals(And(TRUE, TRUE), TRUE)
and_t_f = Equals(And(TRUE, FALSE), FALSE)
and_f_t = Equals(And(FALSE, TRUE), FALSE)
and_f_f = Equals(And(FALSE, FALSE), FALSE)
left_in_bool = Forall((A, B), in_bool(A), conditions=[in_bool(And(A, B))])
right_in_bool = Forall((A, B), in_bool(B), conditions=[in_bool(And(A, B))])
empty_conjunction = And() # base case
multi_conjunction_def = \
Forall(m, Forall((A_1_to_m, B),
Equals(And(A_1_to_m, B), And(And(A_1_to_m), B)).with_wrap_after_operator()),
domain=Natural)
%end axioms