logo

Theory of proveit.logic.booleans

Boolean arithmetic. Boolean ($\mathbb{B}$) is the set containing only TRUE ($\top$) and FALSE ($\bot$). This theory contains operations that are defined to act on Boolean elements: implication ($\Rightarrow$, $\Leftrightarrow$), negation ($\neg$), conjunction ($\land$), and disjunction ($\lor$). The quantification operations, universal ($\forall$) and existential ($\exists$), are also defined in this theory because these operate on multiple instances of Boolean values.

In [1]:
import proveit
%theory

Local content of this theory

common expressions axioms theorems demonstrations

Sub-theories

implicationImplies and Iff (if and only if) operations
negationNot operation
conjunctionAnd operation
disjunctionOr operation
quantificationForall (universal quantification) and Exists (existential quantification) operations

All axioms contained within this theory

proveit.logic.booleans.implication

proveit.logic.booleans.negation

proveit.logic.booleans.conjunction

proveit.logic.booleans.disjunction

proveit.logic.booleans.quantification