logo
In [1]:
import proveit
from proveit.logic import TRUE, FALSE
from proveit import A
from proveit.logic.booleans.conjunction import unary_and_reduction_lemma
theory = proveit.Theory() # the theorem's theory
In [2]:
%proving unary_and_reduction
With these allowed/disallowed theorem/theory presumptions (e.g., to avoid circular dependencies), we begin our proof of
unary_and_reduction:
(see dependencies)
In [3]:
unary_and_reduction_lemma
In [4]:
and_true = unary_and_reduction_lemma.instantiate({A:TRUE})
and_true:  ⊢  
In [5]:
and_false = unary_and_reduction_lemma.instantiate({A:FALSE})
and_false:  ⊢  
In [6]:
%qed
proveit.logic.booleans.conjunction.unary_and_reduction has been proven.