Expression of type And

from the theory of proveit.logic.booleans.conjunction

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit.logic import And
In [2]:
# build up the expression from sub-expressions
expr = And()
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
In [5]:
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
as_total_orderingWhen 'True', style the conjunction as a total ordering (e.g. x < y < z from (x < y) and (y < z))NoneNone/False('with_total_ordering_style',)
In [6]:
# display the expression information
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2