logo

Expression of type ExprTuple

from the theory of proveit.logic.booleans.conjunction

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, Conditional, ExprRange, ExprTuple, Lambda, Variable, n
from proveit.logic import And, Forall, InSet
from proveit.numbers import Natural, one
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda(n, Conditional(Forall(instance_param_or_params = [A], instance_expr = And(ExprRange(Variable("_a", latex_format = r"{_{-}a}"), A, one, n)), condition = A), InSet(n, Natural))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(n \mapsto \left\{\forall_{A~|~A}~\left(A \land  A \land  ..\left(n - 3\right) \times.. \land  A\right) \textrm{ if } n \in \mathbb{N}\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameter: 20
body: 3
2ExprTuple20
3Conditionalvalue: 4
condition: 5
4Operationoperator: 6
operand: 10
5Operationoperator: 8
operands: 9
6Literal
7ExprTuple10
8Literal
9ExprTuple20, 11
10Lambdaparameter: 22
body: 13
11Literal
12ExprTuple22
13Conditionalvalue: 14
condition: 22
14Operationoperator: 15
operands: 16
15Literal
16ExprTuple17
17ExprRangelambda_map: 18
start_index: 19
end_index: 20
18Lambdaparameter: 23
body: 22
19Literal
20Variable
21ExprTuple23
22Variable
23Variable