logo

Expression of type Lambda

from the theory of proveit.logic.booleans.conjunction

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, Conditional, ExprRange, Lambda, Variable, n
from proveit.logic import And, Forall, InSet
from proveit.numbers import Natural, one
In [2]:
# build up the expression from sub-expressions
expr = Lambda(n, Conditional(Forall(instance_param_or_params = [A], instance_expr = And(ExprRange(Variable("_a", latex_format = r"{_{-}a}"), A, one, n)), condition = A), InSet(n, Natural)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
n \mapsto \left\{\forall_{A~|~A}~\left(A \land  A \land  ..\left(n - 3\right) \times.. \land  A\right) \textrm{ if } n \in \mathbb{N}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 19
body: 2
1ExprTuple19
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operand: 9
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9
7Literal
8ExprTuple19, 10
9Lambdaparameter: 21
body: 12
10Literal
11ExprTuple21
12Conditionalvalue: 13
condition: 21
13Operationoperator: 14
operands: 15
14Literal
15ExprTuple16
16ExprRangelambda_map: 17
start_index: 18
end_index: 19
17Lambdaparameter: 22
body: 21
18Literal
19Variable
20ExprTuple22
21Variable
22Variable