logo

Expression of type Conditional

from the theory of proveit.logic.booleans.conjunction

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, Conditional, ExprRange, Variable, n
from proveit.logic import And, Forall, InSet
from proveit.numbers import Natural, one
In [2]:
# build up the expression from sub-expressions
expr = Conditional(Forall(instance_param_or_params = [A], instance_expr = And(ExprRange(Variable("_a", latex_format = r"{_{-}a}"), A, one, n)), condition = A), InSet(n, Natural))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left\{\forall_{A~|~A}~\left(A \land  A \land  ..\left(n - 3\right) \times.. \land  A\right) \textrm{ if } n \in \mathbb{N}\right..
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
condition_delimiter'comma' or 'and'commacomma('with_comma_delimiter', 'with_conjunction_delimiter')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Conditionalvalue: 1
condition: 2
1Operationoperator: 3
operand: 7
2Operationoperator: 5
operands: 6
3Literal
4ExprTuple7
5Literal
6ExprTuple17, 8
7Lambdaparameter: 19
body: 10
8Literal
9ExprTuple19
10Conditionalvalue: 11
condition: 19
11Operationoperator: 12
operands: 13
12Literal
13ExprTuple14
14ExprRangelambda_map: 15
start_index: 16
end_index: 17
15Lambdaparameter: 20
body: 19
16Literal
17Variable
18ExprTuple20
19Variable
20Variable