import proveit
# Prepare this notebook for defining the axioms of a theory:
%axioms_notebook # Keep this at the top following 'import proveit'.
from proveit.logic import TRUE, FALSE, Not, Or, Equals, Forall, in_bool
from proveit import A, B, n, m
from proveit.core_expr_types import B_1_to_n, A_1_to_m
from proveit.numbers import Natural
%begin axioms
or_t_t = Equals(Or(TRUE, TRUE), TRUE)
or_t_f = Equals(Or(TRUE, FALSE), TRUE)
or_f_t = Equals(Or(FALSE, TRUE), TRUE)
or_f_f = Equals(Or(FALSE, FALSE), FALSE)
left_in_bool = Forall((A, B), in_bool(A), conditions=[in_bool(Or(A, B))])
right_in_bool = Forall((A, B), in_bool(B), conditions=[in_bool(Or(A, B))])
empty_disjunction = Not(Or()) # base case
multi_disjunction_def = \
Forall(m, Forall((A_1_to_m, B),
Equals(Or(A_1_to_m, B), Or(Or(A_1_to_m), B)).with_wrapping_at(2)),
domain=Natural)
%end axioms