\left\{\begin{array}{l}\forall_{U_{1}, U_{2}, \ldots, U_{i}, V, W_{1}, W_{2}, \ldots, W_{k} \underset{{\scriptscriptstyle c}}{\in} \textrm{VecSpaces}\left(K\right)}~\\
\left[\begin{array}{l}\forall_{\left(a_{1} \in U_{1}\right), \left(a_{2} \in U_{2}\right), \ldots, \left(a_{i} \in U_{i}\right),\left(c_{1} \in W_{1}\right), \left(c_{2} \in W_{2}\right), \ldots, \left(c_{k} \in W_{k}\right),\left(d_{1} \in U_{1}\right), \left(d_{2} \in U_{2}\right), \ldots, \left(d_{i} \in U_{i}\right),\left(e_{1} \in W_{1}\right), \left(e_{2} \in W_{2}\right), \ldots, \left(e_{k} \in W_{k}\right)}~\\
\left[\forall_{b \in V}~\left(\begin{array}{c} \begin{array}{l} \left(\begin{array}{c} \begin{array}{l} \left(a_{1} {\otimes} a_{2} {\otimes} \ldots {\otimes} a_{i}{\otimes} c_{1} {\otimes} c_{2} {\otimes} \ldots {\otimes} c_{k}\right) = \\ \left(d_{1} {\otimes} d_{2} {\otimes} \ldots {\otimes} d_{i}{\otimes} e_{1} {\otimes} e_{2} {\otimes} \ldots {\otimes} e_{k}\right) \end{array} \end{array}\right) \Rightarrow \\ \left(\begin{array}{c} \begin{array}{l} \left(a_{1} {\otimes} a_{2} {\otimes} \ldots {\otimes} a_{i} {\otimes} b{\otimes} c_{1} {\otimes} c_{2} {\otimes} \ldots {\otimes} c_{k}\right) = \\ \left(d_{1} {\otimes} d_{2} {\otimes} \ldots {\otimes} d_{i} {\otimes} b{\otimes} e_{1} {\otimes} e_{2} {\otimes} \ldots {\otimes} e_{k}\right) \end{array} \end{array}\right) \end{array} \end{array}\right)\right]\end{array}\right]\end{array} \textrm{ if } i \in \mathbb{N} , k \in \mathbb{N}\right..