logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, b
from proveit.core_expr_types import a_1_to_i, c_1_to_k, d_1_to_i, e_1_to_k
from proveit.linear_algebra import TensorProd
from proveit.logic import Equals
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Equals(TensorProd(a_1_to_i, c_1_to_k), TensorProd(d_1_to_i, e_1_to_k)).with_wrapping_at(2), Equals(TensorProd(a_1_to_i, b, c_1_to_k), TensorProd(d_1_to_i, b, e_1_to_k)).with_wrapping_at(2))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\begin{array}{c} \begin{array}{l} \left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i}{\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right) =  \\ \left(d_{1} {\otimes}  d_{2} {\otimes}  \ldots {\otimes}  d_{i}{\otimes} e_{1} {\otimes}  e_{2} {\otimes}  \ldots {\otimes}  e_{k}\right) \end{array} \end{array}, \begin{array}{c} \begin{array}{l} \left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} b{\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right) =  \\ \left(d_{1} {\otimes}  d_{2} {\otimes}  \ldots {\otimes}  d_{i} {\otimes} b{\otimes} e_{1} {\otimes}  e_{2} {\otimes}  \ldots {\otimes}  e_{k}\right) \end{array} \end{array}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 4
operands: 3
2Operationoperator: 4
operands: 5
3ExprTuple6, 7
4Literal
5ExprTuple8, 9
6Operationoperator: 13
operands: 10
7Operationoperator: 13
operands: 11
8Operationoperator: 13
operands: 12
9Operationoperator: 13
operands: 14
10ExprTuple15, 16
11ExprTuple17, 19
12ExprTuple15, 18, 16
13Literal
14ExprTuple17, 18, 19
15ExprRangelambda_map: 20
start_index: 25
end_index: 23
16ExprRangelambda_map: 21
start_index: 25
end_index: 26
17ExprRangelambda_map: 22
start_index: 25
end_index: 23
18Variable
19ExprRangelambda_map: 24
start_index: 25
end_index: 26
20Lambdaparameter: 36
body: 27
21Lambdaparameter: 36
body: 28
22Lambdaparameter: 36
body: 29
23Variable
24Lambdaparameter: 36
body: 30
25Literal
26Variable
27IndexedVarvariable: 31
index: 36
28IndexedVarvariable: 32
index: 36
29IndexedVarvariable: 33
index: 36
30IndexedVarvariable: 34
index: 36
31Variable
32Variable
33Variable
34Variable
35ExprTuple36
36Variable