logo

Expression of type Implies

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import b
from proveit.core_expr_types import a_1_to_i, c_1_to_k, d_1_to_i, e_1_to_k
from proveit.linear_algebra import TensorProd
from proveit.logic import Equals, Implies
In [2]:
# build up the expression from sub-expressions
expr = Implies(Equals(TensorProd(a_1_to_i, c_1_to_k), TensorProd(d_1_to_i, e_1_to_k)).with_wrapping_at(2), Equals(TensorProd(a_1_to_i, b, c_1_to_k), TensorProd(d_1_to_i, b, e_1_to_k)).with_wrapping_at(2)).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(\begin{array}{c} \begin{array}{l} \left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i}{\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right) =  \\ \left(d_{1} {\otimes}  d_{2} {\otimes}  \ldots {\otimes}  d_{i}{\otimes} e_{1} {\otimes}  e_{2} {\otimes}  \ldots {\otimes}  e_{k}\right) \end{array} \end{array}\right) \Rightarrow  \\ \left(\begin{array}{c} \begin{array}{l} \left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} b{\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right) =  \\ \left(d_{1} {\otimes}  d_{2} {\otimes}  \ldots {\otimes}  d_{i} {\otimes} b{\otimes} e_{1} {\otimes}  e_{2} {\otimes}  \ldots {\otimes}  e_{k}\right) \end{array} \end{array}\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 9
6Literal
7ExprTuple10, 11
8Operationoperator: 15
operands: 12
9Operationoperator: 15
operands: 13
10Operationoperator: 15
operands: 14
11Operationoperator: 15
operands: 16
12ExprTuple17, 18
13ExprTuple19, 21
14ExprTuple17, 20, 18
15Literal
16ExprTuple19, 20, 21
17ExprRangelambda_map: 22
start_index: 27
end_index: 25
18ExprRangelambda_map: 23
start_index: 27
end_index: 28
19ExprRangelambda_map: 24
start_index: 27
end_index: 25
20Variable
21ExprRangelambda_map: 26
start_index: 27
end_index: 28
22Lambdaparameter: 38
body: 29
23Lambdaparameter: 38
body: 30
24Lambdaparameter: 38
body: 31
25Variable
26Lambdaparameter: 38
body: 32
27Literal
28Variable
29IndexedVarvariable: 33
index: 38
30IndexedVarvariable: 34
index: 38
31IndexedVarvariable: 35
index: 38
32IndexedVarvariable: 36
index: 38
33Variable
34Variable
35Variable
36Variable
37ExprTuple38
38Variable