logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Lambda, beta, gamma, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd
from proveit.logic import Equals, Forall, InSet
from proveit.numbers import Add, Interval, Mult, four, one, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Add(i, one)
sub_expr2 = TensorProd(x, y)
sub_expr3 = Interval(two, four)
sub_expr4 = InSet(i, sub_expr3)
sub_expr5 = ScalarMult(Mult(gamma, i, beta, sub_expr1), sub_expr2)
sub_expr6 = ScalarMult(ScalarMult(gamma, i), ScalarMult(beta, ScalarMult(sub_expr1, sub_expr2)))
expr = ExprTuple(Forall(instance_param_or_params = [i], instance_expr = Equals(sub_expr6, sub_expr5), domain = sub_expr3), Equals(Lambda(i, Conditional(sub_expr6, sub_expr4)), Lambda(i, Conditional(sub_expr5, sub_expr4))).with_wrapping_at(2))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\forall_{i \in \{2~\ldotp \ldotp~4\}}~\left(\left(\left(\gamma \cdot i\right) \cdot \left(\beta \cdot \left(\left(i + 1\right) \cdot \left(x {\otimes} y\right)\right)\right)\right) = \left(\left(\gamma \cdot i \cdot \beta \cdot \left(i + 1\right)\right) \cdot \left(x {\otimes} y\right)\right)\right), \begin{array}{c} \begin{array}{l} \left[i \mapsto \left\{\left(\gamma \cdot i\right) \cdot \left(\beta \cdot \left(\left(i + 1\right) \cdot \left(x {\otimes} y\right)\right)\right) \textrm{ if } i \in \{2~\ldotp \ldotp~4\}\right..\right] =  \\ \left[i \mapsto \left\{\left(\gamma \cdot i \cdot \beta \cdot \left(i + 1\right)\right) \cdot \left(x {\otimes} y\right) \textrm{ if } i \in \{2~\ldotp \ldotp~4\}\right..\right] \end{array} \end{array}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 3
operand: 6
2Operationoperator: 15
operands: 5
3Literal
4ExprTuple6
5ExprTuple7, 8
6Lambdaparameter: 46
body: 9
7Lambdaparameter: 46
body: 10
8Lambdaparameter: 46
body: 12
9Conditionalvalue: 13
condition: 14
10Conditionalvalue: 19
condition: 14
11ExprTuple46
12Conditionalvalue: 20
condition: 14
13Operationoperator: 15
operands: 16
14Operationoperator: 17
operands: 18
15Literal
16ExprTuple19, 20
17Literal
18ExprTuple46, 21
19Operationoperator: 38
operands: 22
20Operationoperator: 38
operands: 23
21Operationoperator: 24
operands: 25
22ExprTuple26, 27
23ExprTuple28, 41
24Literal
25ExprTuple29, 30
26Operationoperator: 38
operands: 31
27Operationoperator: 38
operands: 32
28Operationoperator: 33
operands: 34
29Literal
30Literal
31ExprTuple36, 46
32ExprTuple37, 35
33Literal
34ExprTuple36, 46, 37, 40
35Operationoperator: 38
operands: 39
36Variable
37Variable
38Literal
39ExprTuple40, 41
40Operationoperator: 42
operands: 43
41Operationoperator: 44
operands: 45
42Literal
43ExprTuple46, 47
44Literal
45ExprTuple48, 49
46Variable
47Literal
48Variable
49Variable