logo

Expression of type Lambda

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, beta, gamma, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd
from proveit.logic import InSet
from proveit.numbers import Add, Interval, Mult, four, one, two
In [2]:
# build up the expression from sub-expressions
expr = Lambda(i, Conditional(ScalarMult(Mult(gamma, i, beta, Add(i, one)), TensorProd(x, y)), InSet(i, Interval(two, four))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
i \mapsto \left\{\left(\gamma \cdot i \cdot \beta \cdot \left(i + 1\right)\right) \cdot \left(x {\otimes} y\right) \textrm{ if } i \in \{2~\ldotp \ldotp~4\}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 27
body: 2
1ExprTuple27
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9, 10
7Literal
8ExprTuple27, 11
9Operationoperator: 12
operands: 13
10Operationoperator: 14
operands: 15
11Operationoperator: 16
operands: 17
12Literal
13ExprTuple18, 27, 19, 20
14Literal
15ExprTuple21, 22
16Literal
17ExprTuple23, 24
18Variable
19Variable
20Operationoperator: 25
operands: 26
21Variable
22Variable
23Literal
24Literal
25Literal
26ExprTuple27, 28
27Variable
28Literal