logo

Expression of type Lambda

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, beta, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd
from proveit.logic import InSet
from proveit.numbers import Interval, four, two
In [2]:
# build up the expression from sub-expressions
expr = Lambda(i, Conditional(TensorProd(ScalarMult(beta, x), ScalarMult(beta, y)), InSet(i, Interval(two, four))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
i \mapsto \left\{\left(\beta \cdot x\right) {\otimes} \left(\beta \cdot y\right) \textrm{ if } i \in \{2~\ldotp \ldotp~4\}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 11
body: 2
1ExprTuple11
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9, 10
7Literal
8ExprTuple11, 12
9Operationoperator: 14
operands: 13
10Operationoperator: 14
operands: 15
11Variable
12Operationoperator: 16
operands: 17
13ExprTuple19, 18
14Literal
15ExprTuple19, 20
16Literal
17ExprTuple21, 22
18Variable
19Variable
20Variable
21Literal
22Literal