| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4 | , , ⊢ |
| : , : , : , : |
1 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
2 | instantiation | 23, 5 | , , ⊢ |
| : , : , : |
3 | instantiation | 12, 6 | , , ⊢ |
| : , : |
4 | instantiation | 23, 7 | , ⊢ |
| : , : , : |
5 | instantiation | 35, 74, 37, 36, 38, 46, 64, 8, 9* | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
6 | modus ponens | 10, 11 | , , ⊢ |
7 | instantiation | 12, 13 | , ⊢ |
| : , : |
8 | instantiation | 14, 46, 74, 67 | , ⊢ |
| : , : , : , : |
9 | instantiation | 15, 16, 17 | , , ⊢ |
| : , : , : |
10 | instantiation | 18, 58, 33, 19 | ⊢ |
| : , : , : , : , : , : , : |
11 | modus ponens | 20, 22 | , ⊢ |
12 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
13 | modus ponens | 21, 22 | , ⊢ |
14 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
15 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
16 | instantiation | 23, 24 | , , ⊢ |
| : , : , : |
17 | instantiation | 25, 26, 27, 69, 28* | , , ⊢ |
| : , : , : , : , : |
18 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum |
19 | instantiation | 29, 74, 30 | ⊢ |
| : , : |
20 | instantiation | 31, 58, 33 | ⊢ |
| : , : , : , : , : , : |
21 | instantiation | 32, 36, 58, 37, 33, 38 | ⊢ |
| : , : , : , : , : , : , : , : , : , : |
22 | generalization | 34 | , ⊢ |
23 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
24 | instantiation | 35, 74, 36, 37, 38, 46, 64, 67 | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
25 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
26 | instantiation | 62, 39 | ⊢ |
| : |
27 | instantiation | 65, 40, 41 | , ⊢ |
| : , : , : |
28 | instantiation | 42, 69, 43* | ⊢ |
| : , : |
29 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_real_closure_nat_power |
30 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
31 | theorem | | ⊢ |
| proveit.linear_algebra.addition.summation_closure |
32 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation |
33 | instantiation | 44, 51, 45, 46 | ⊢ |
| : , : , : |
34 | instantiation | 50, 51, 45, 46, 54, 64, 67 | , ⊢ |
| : , : , : , : |
35 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
36 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
37 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
38 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
39 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
40 | instantiation | 47, 51, 48, 71, 49* | ⊢ |
| : , : , : |
41 | instantiation | 50, 51, 52, 53, 54, 55, 56 | , ⊢ |
| : , : , : , : |
42 | axiom | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
43 | instantiation | 57, 69, 58, 59*, 60* | ⊢ |
| : , : , : |
44 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
45 | instantiation | 63 | ⊢ |
| : , : |
46 | instantiation | 61, 71 | ⊢ |
| : |
47 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_cart_exps_within_cart_exp |
48 | instantiation | 63 | ⊢ |
| : , : |
49 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.mult_3_3 |
50 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
51 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
52 | instantiation | 63 | ⊢ |
| : , : |
53 | instantiation | 62, 71 | ⊢ |
| : |
54 | instantiation | 63 | ⊢ |
| : , : |
55 | instantiation | 65, 66, 64 | ⊢ |
| : , : , : |
56 | instantiation | 65, 66, 67 | ⊢ |
| : , : , : |
57 | theorem | | ⊢ |
| proveit.numbers.exponentiation.product_of_posnat_powers |
58 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
59 | instantiation | 68, 69 | ⊢ |
| : |
60 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
61 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
62 | theorem | | ⊢ |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
63 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
64 | assumption | | ⊢ |
65 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
66 | instantiation | 70, 71, 72 | ⊢ |
| : , : , : |
67 | assumption | | ⊢ |
68 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
69 | instantiation | 73, 76, 74 | ⊢ |
| : , : , : |
70 | theorem | | ⊢ |
| proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
71 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
72 | instantiation | 75, 76 | ⊢ |
| : , : |
73 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
74 | assumption | | ⊢ |
75 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
76 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
*equality replacement requirements |