logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import beta, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.logic import Equals
from proveit.numbers import Exp, Interval, four, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = Exp(beta, two)
sub_expr3 = TensorProd(x, y)
sub_expr4 = Interval(two, four)
expr = Equals(VecSum(index_or_indices = sub_expr1, summand = ScalarMult(sub_expr2, sub_expr3), domain = sub_expr4), ScalarMult(sub_expr2, VecSum(index_or_indices = sub_expr1, summand = sub_expr3, domain = sub_expr4)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\sum_{i=2}^{4} \left(\beta^{2} \cdot \left(x {\otimes} y\right)\right)\right) = \left(\beta^{2} \cdot \left(\sum_{i=2}^{4} \left(x {\otimes} y\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 10
operand: 7
4Operationoperator: 14
operands: 6
5ExprTuple7
6ExprTuple18, 8
7Lambdaparameter: 30
body: 9
8Operationoperator: 10
operand: 13
9Conditionalvalue: 12
condition: 20
10Literal
11ExprTuple13
12Operationoperator: 14
operands: 15
13Lambdaparameter: 30
body: 17
14Literal
15ExprTuple18, 19
16ExprTuple30
17Conditionalvalue: 19
condition: 20
18Operationoperator: 21
operands: 22
19Operationoperator: 23
operands: 24
20Operationoperator: 25
operands: 26
21Literal
22ExprTuple27, 34
23Literal
24ExprTuple28, 29
25Literal
26ExprTuple30, 31
27Variable
28Variable
29Variable
30Variable
31Operationoperator: 32
operands: 33
32Literal
33ExprTuple34, 35
34Literal
35Literal