| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , ⊢ |
| : , : , : |
1 | reference | 12 | ⊢ |
2 | instantiation | 19, 4 | , , ⊢ |
| : , : , : |
3 | instantiation | 5, 6 | , , ⊢ |
| : , : |
4 | instantiation | 30, 69, 32, 31, 33, 41, 59, 7, 8* | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
5 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
6 | modus ponens | 9, 10 | , , ⊢ |
7 | instantiation | 11, 41, 69, 62 | , ⊢ |
| : , : , : , : |
8 | instantiation | 12, 13, 14 | , , ⊢ |
| : , : , : |
9 | instantiation | 15, 53, 28, 16 | ⊢ |
| : , : , : , : , : , : , : |
10 | modus ponens | 17, 18 | , ⊢ |
11 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
12 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
13 | instantiation | 19, 20 | , , ⊢ |
| : , : , : |
14 | instantiation | 21, 22, 23, 64, 24* | , , ⊢ |
| : , : , : , : , : |
15 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum |
16 | instantiation | 25, 69, 26 | ⊢ |
| : , : |
17 | instantiation | 27, 53, 28 | ⊢ |
| : , : , : , : , : , : |
18 | generalization | 29 | , ⊢ |
19 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
20 | instantiation | 30, 69, 31, 32, 33, 41, 59, 62 | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
21 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
22 | instantiation | 57, 34 | ⊢ |
| : |
23 | instantiation | 60, 35, 36 | , ⊢ |
| : , : , : |
24 | instantiation | 37, 64, 38* | ⊢ |
| : , : |
25 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_real_closure_nat_power |
26 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
27 | theorem | | ⊢ |
| proveit.linear_algebra.addition.summation_closure |
28 | instantiation | 39, 46, 40, 41 | ⊢ |
| : , : , : |
29 | instantiation | 45, 46, 40, 41, 49, 59, 62 | , ⊢ |
| : , : , : , : |
30 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
31 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
32 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
33 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
34 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
35 | instantiation | 42, 46, 43, 66, 44* | ⊢ |
| : , : , : |
36 | instantiation | 45, 46, 47, 48, 49, 50, 51 | , ⊢ |
| : , : , : , : |
37 | axiom | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
38 | instantiation | 52, 64, 53, 54*, 55* | ⊢ |
| : , : , : |
39 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
40 | instantiation | 58 | ⊢ |
| : , : |
41 | instantiation | 56, 66 | ⊢ |
| : |
42 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_cart_exps_within_cart_exp |
43 | instantiation | 58 | ⊢ |
| : , : |
44 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.mult_3_3 |
45 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
46 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
47 | instantiation | 58 | ⊢ |
| : , : |
48 | instantiation | 57, 66 | ⊢ |
| : |
49 | instantiation | 58 | ⊢ |
| : , : |
50 | instantiation | 60, 61, 59 | ⊢ |
| : , : , : |
51 | instantiation | 60, 61, 62 | ⊢ |
| : , : , : |
52 | theorem | | ⊢ |
| proveit.numbers.exponentiation.product_of_posnat_powers |
53 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
54 | instantiation | 63, 64 | ⊢ |
| : |
55 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
56 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
57 | theorem | | ⊢ |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
58 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
59 | assumption | | ⊢ |
60 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
61 | instantiation | 65, 66, 67 | ⊢ |
| : , : , : |
62 | assumption | | ⊢ |
63 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
64 | instantiation | 68, 71, 69 | ⊢ |
| : , : , : |
65 | theorem | | ⊢ |
| proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
66 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
67 | instantiation | 70, 71 | ⊢ |
| : , : |
68 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
69 | assumption | | ⊢ |
70 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
71 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
*equality replacement requirements |