logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.scalar_multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Function, K, Lambda, V, c, k
from proveit.core_expr_types import Q__b_1_to_j, b_1_to_j, f__b_1_to_j
from proveit.linear_algebra import ScalarMult, VecSum
from proveit.logic import Equals, Implies, InSet
from proveit.numbers import Mult
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [b_1_to_j]
sub_expr2 = Function(c, sub_expr1)
sub_expr3 = VecSum(index_or_indices = sub_expr1, summand = ScalarMult(sub_expr2, f__b_1_to_j), condition = Q__b_1_to_j)
expr = ExprTuple(Lambda(k, Conditional(Implies(InSet(sub_expr3, V), Equals(ScalarMult(k, sub_expr3), VecSum(index_or_indices = sub_expr1, summand = ScalarMult(Mult(k, sub_expr2), f__b_1_to_j), condition = Q__b_1_to_j)).with_wrapping_at(1)).with_wrapping_at(1), InSet(k, K))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(k \mapsto \left\{\begin{array}{c} \begin{array}{l} \left(\left[\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~\left(c\left(b_{1}, b_{2}, \ldots, b_{j}\right) \cdot f\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right)\right] \in V\right) \\  \Rightarrow \left(\begin{array}{c} \begin{array}{l} \left(k \cdot \left[\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~\left(c\left(b_{1}, b_{2}, \ldots, b_{j}\right) \cdot f\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right)\right]\right) \\  = \left[\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~\left(\left(k \cdot c\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right) \cdot f\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right)\right] \end{array} \end{array}\right) \end{array} \end{array} \textrm{ if } k \in K\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameter: 39
body: 3
2ExprTuple39
3Conditionalvalue: 4
condition: 5
4Operationoperator: 6
operands: 7
5Operationoperator: 12
operands: 8
6Literal
7ExprTuple9, 10
8ExprTuple39, 11
9Operationoperator: 12
operands: 13
10Operationoperator: 14
operands: 15
11Variable
12Literal
13ExprTuple21, 16
14Literal
15ExprTuple17, 18
16Variable
17Operationoperator: 33
operands: 19
18Operationoperator: 23
operand: 22
19ExprTuple39, 21
20ExprTuple22
21Operationoperator: 23
operand: 26
22Lambdaparameters: 43
body: 25
23Literal
24ExprTuple26
25Conditionalvalue: 27
condition: 31
26Lambdaparameters: 43
body: 28
27Operationoperator: 33
operands: 29
28Conditionalvalue: 30
condition: 31
29ExprTuple32, 38
30Operationoperator: 33
operands: 34
31Operationoperator: 35
operands: 43
32Operationoperator: 36
operands: 37
33Literal
34ExprTuple40, 38
35Variable
36Literal
37ExprTuple39, 40
38Operationoperator: 41
operands: 43
39Variable
40Operationoperator: 42
operands: 43
41Variable
42Variable
43ExprTuple44
44ExprRangelambda_map: 45
start_index: 46
end_index: 47
45Lambdaparameter: 51
body: 48
46Literal
47Variable
48IndexedVarvariable: 49
index: 51
49Variable
50ExprTuple51
51Variable