logo

Expression of type Equals

from the theory of proveit.linear_algebra.scalar_multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Function, c, k
from proveit.core_expr_types import Q__b_1_to_j, b_1_to_j, f__b_1_to_j
from proveit.linear_algebra import ScalarMult, VecSum
from proveit.logic import Equals
from proveit.numbers import Mult
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [b_1_to_j]
sub_expr2 = Function(c, sub_expr1)
expr = Equals(ScalarMult(k, VecSum(index_or_indices = sub_expr1, summand = ScalarMult(sub_expr2, f__b_1_to_j), condition = Q__b_1_to_j)), VecSum(index_or_indices = sub_expr1, summand = ScalarMult(Mult(k, sub_expr2), f__b_1_to_j), condition = Q__b_1_to_j)).with_wrapping_at(1)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(k \cdot \left[\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~\left(c\left(b_{1}, b_{2}, \ldots, b_{j}\right) \cdot f\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right)\right]\right) \\  = \left[\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~\left(\left(k \cdot c\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right) \cdot f\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right)\right] \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(1)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 19
operands: 5
4Operationoperator: 9
operand: 8
5ExprTuple25, 7
6ExprTuple8
7Operationoperator: 9
operand: 12
8Lambdaparameters: 29
body: 11
9Literal
10ExprTuple12
11Conditionalvalue: 13
condition: 17
12Lambdaparameters: 29
body: 14
13Operationoperator: 19
operands: 15
14Conditionalvalue: 16
condition: 17
15ExprTuple18, 24
16Operationoperator: 19
operands: 20
17Operationoperator: 21
operands: 29
18Operationoperator: 22
operands: 23
19Literal
20ExprTuple26, 24
21Variable
22Literal
23ExprTuple25, 26
24Operationoperator: 27
operands: 29
25Variable
26Operationoperator: 28
operands: 29
27Variable
28Variable
29ExprTuple30
30ExprRangelambda_map: 31
start_index: 32
end_index: 33
31Lambdaparameter: 37
body: 34
32Literal
33Variable
34IndexedVarvariable: 35
index: 37
35Variable
36ExprTuple37
37Variable