logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.scalar_multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, Function, V, c, k
from proveit.core_expr_types import Q__b_1_to_j, b_1_to_j, f__b_1_to_j
from proveit.linear_algebra import ScalarMult, VecSum
from proveit.logic import Equals, InSet
from proveit.numbers import Mult
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [b_1_to_j]
sub_expr2 = Function(c, sub_expr1)
sub_expr3 = VecSum(index_or_indices = sub_expr1, summand = ScalarMult(sub_expr2, f__b_1_to_j), condition = Q__b_1_to_j)
expr = ExprTuple(InSet(sub_expr3, V), Equals(ScalarMult(k, sub_expr3), VecSum(index_or_indices = sub_expr1, summand = ScalarMult(Mult(k, sub_expr2), f__b_1_to_j), condition = Q__b_1_to_j)).with_wrapping_at(1))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left[\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~\left(c\left(b_{1}, b_{2}, \ldots, b_{j}\right) \cdot f\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right)\right] \in V, \begin{array}{c} \begin{array}{l} \left(k \cdot \left[\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~\left(c\left(b_{1}, b_{2}, \ldots, b_{j}\right) \cdot f\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right)\right]\right) \\  = \left[\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~\left(\left(k \cdot c\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right) \cdot f\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right)\right] \end{array} \end{array}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 3
operands: 4
2Operationoperator: 5
operands: 6
3Literal
4ExprTuple12, 7
5Literal
6ExprTuple8, 9
7Variable
8Operationoperator: 24
operands: 10
9Operationoperator: 14
operand: 13
10ExprTuple30, 12
11ExprTuple13
12Operationoperator: 14
operand: 17
13Lambdaparameters: 34
body: 16
14Literal
15ExprTuple17
16Conditionalvalue: 18
condition: 22
17Lambdaparameters: 34
body: 19
18Operationoperator: 24
operands: 20
19Conditionalvalue: 21
condition: 22
20ExprTuple23, 29
21Operationoperator: 24
operands: 25
22Operationoperator: 26
operands: 34
23Operationoperator: 27
operands: 28
24Literal
25ExprTuple31, 29
26Variable
27Literal
28ExprTuple30, 31
29Operationoperator: 32
operands: 34
30Variable
31Operationoperator: 33
operands: 34
32Variable
33Variable
34ExprTuple35
35ExprRangelambda_map: 36
start_index: 37
end_index: 38
36Lambdaparameter: 42
body: 39
37Literal
38Variable
39IndexedVarvariable: 40
index: 42
40Variable
41ExprTuple42
42Variable