| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | , , , , ⊢  |
| | : , : , :  |
| 1 | reference | 8 | ⊢  |
| 2 | instantiation | 8, 4, 5 | , , , , ⊢  |
| | : , : , :  |
| 3 | modus ponens | 6, 7 | , , , , ⊢  |
| 4 | instantiation | 8, 9, 10 | , , , ⊢  |
| | : , : , :  |
| 5 | instantiation | 18, 11 | , , ⊢  |
| | : , : , :  |
| 6 | instantiation | 12, 40, 13, 42, 14, 24, 44 | ⊢  |
| | : , : , : , : , : , : , : , :  |
| 7 | instantiation | 33, 34, 21, 45, 23, 15, 47, 16 | , , , , ⊢  |
| | : , : , : , :  |
| 8 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 9 | instantiation | 18, 17 | , , ⊢  |
| | : , : , :  |
| 10 | instantiation | 18, 19 | , , ⊢  |
| | : , : , :  |
| 11 | instantiation | 29, 20 | , , ⊢  |
| | : , :  |
| 12 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_factorization_from_add |
| 13 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 14 | instantiation | 31, 34, 21, 45, 23 | ⊢  |
| | : , : , :  |
| 15 | instantiation | 52 | ⊢  |
| | : , :  |
| 16 | instantiation | 22, 51, 23, 24, 25, 26, 27 | , , , ⊢  |
| | : , : , : , :  |
| 17 | instantiation | 29, 28 | , , ⊢  |
| | : , :  |
| 18 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 19 | instantiation | 29, 30 | , , ⊢  |
| | : , :  |
| 20 | instantiation | 39, 40, 41, 42, 43, 44, 45, 35, 47, 48, 36 | , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 21 | instantiation | 52 | ⊢  |
| | : , :  |
| 22 | theorem | | ⊢  |
| | proveit.linear_algebra.addition.closure |
| 23 | instantiation | 31, 34, 43, 45 | ⊢  |
| | : , : , :  |
| 24 | instantiation | 32 | ⊢  |
| | : , : , :  |
| 25 | instantiation | 33, 34, 43, 45, 37, 48, 38 | , ⊢  |
| | : , : , : , :  |
| 26 | instantiation | 33, 34, 43, 45, 46, 48, 49 | , ⊢  |
| | : , : , : , :  |
| 27 | instantiation | 33, 34, 43, 45, 35, 48, 36 | , ⊢  |
| | : , : , : , :  |
| 28 | instantiation | 39, 40, 41, 42, 43, 44, 45, 37, 47, 48, 38 | , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 29 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 30 | instantiation | 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 | , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 31 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
| 32 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 33 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
| 34 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 35 | instantiation | 52 | ⊢  |
| | : , :  |
| 36 | assumption | | ⊢  |
| 37 | instantiation | 52 | ⊢  |
| | : , :  |
| 38 | assumption | | ⊢  |
| 39 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_disassociation |
| 40 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 41 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 42 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 43 | instantiation | 52 | ⊢  |
| | : , :  |
| 44 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 45 | instantiation | 50, 51 | ⊢  |
| | :  |
| 46 | instantiation | 52 | ⊢  |
| | : , :  |
| 47 | assumption | | ⊢  |
| 48 | assumption | | ⊢  |
| 49 | assumption | | ⊢  |
| 50 | theorem | | ⊢  |
| | proveit.linear_algebra.real_vec_set_is_vec_space |
| 51 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 52 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |