| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , , ⊢ |
| : , : , : |
1 | reference | 8 | ⊢ |
2 | instantiation | 8, 4, 5 | , , , , ⊢ |
| : , : , : |
3 | modus ponens | 6, 7 | , , , , ⊢ |
4 | instantiation | 8, 9, 10 | , , , ⊢ |
| : , : , : |
5 | instantiation | 18, 11 | , , ⊢ |
| : , : , : |
6 | instantiation | 12, 40, 13, 42, 14, 24, 44 | ⊢ |
| : , : , : , : , : , : , : , : |
7 | instantiation | 33, 34, 21, 45, 23, 15, 47, 16 | , , , , ⊢ |
| : , : , : , : |
8 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
9 | instantiation | 18, 17 | , , ⊢ |
| : , : , : |
10 | instantiation | 18, 19 | , , ⊢ |
| : , : , : |
11 | instantiation | 29, 20 | , , ⊢ |
| : , : |
12 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_factorization_from_add |
13 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
14 | instantiation | 31, 34, 21, 45, 23 | ⊢ |
| : , : , : |
15 | instantiation | 52 | ⊢ |
| : , : |
16 | instantiation | 22, 51, 23, 24, 25, 26, 27 | , , , ⊢ |
| : , : , : , : |
17 | instantiation | 29, 28 | , , ⊢ |
| : , : |
18 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
19 | instantiation | 29, 30 | , , ⊢ |
| : , : |
20 | instantiation | 39, 40, 41, 42, 43, 44, 45, 35, 47, 48, 36 | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
21 | instantiation | 52 | ⊢ |
| : , : |
22 | theorem | | ⊢ |
| proveit.linear_algebra.addition.closure |
23 | instantiation | 31, 34, 43, 45 | ⊢ |
| : , : , : |
24 | instantiation | 32 | ⊢ |
| : , : , : |
25 | instantiation | 33, 34, 43, 45, 37, 48, 38 | , ⊢ |
| : , : , : , : |
26 | instantiation | 33, 34, 43, 45, 46, 48, 49 | , ⊢ |
| : , : , : , : |
27 | instantiation | 33, 34, 43, 45, 35, 48, 36 | , ⊢ |
| : , : , : , : |
28 | instantiation | 39, 40, 41, 42, 43, 44, 45, 37, 47, 48, 38 | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
29 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
30 | instantiation | 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
31 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
32 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
33 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
34 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
35 | instantiation | 52 | ⊢ |
| : , : |
36 | assumption | | ⊢ |
37 | instantiation | 52 | ⊢ |
| : , : |
38 | assumption | | ⊢ |
39 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_disassociation |
40 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
41 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
42 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
43 | instantiation | 52 | ⊢ |
| : , : |
44 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
45 | instantiation | 50, 51 | ⊢ |
| : |
46 | instantiation | 52 | ⊢ |
| : , : |
47 | assumption | | ⊢ |
48 | assumption | | ⊢ |
49 | assumption | | ⊢ |
50 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
51 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
52 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |