logo

Expression of type Equals

from the theory of proveit.linear_algebra.addition

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import v, w, x, y, z
from proveit.linear_algebra import TensorProd, VecAdd
from proveit.logic import Equals
In [2]:
# build up the expression from sub-expressions
sub_expr1 = TensorProd(y, z)
sub_expr2 = TensorProd(y, w)
sub_expr3 = TensorProd(y, v)
expr = Equals(VecAdd(TensorProd(x, sub_expr1), TensorProd(x, sub_expr2), TensorProd(x, sub_expr3)), TensorProd(x, VecAdd(sub_expr1, sub_expr2, sub_expr3))).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(\left(x {\otimes} \left(y {\otimes} z\right)\right) + \left(x {\otimes} \left(y {\otimes} w\right)\right) + \left(x {\otimes} \left(y {\otimes} v\right)\right)\right) =  \\ \left(x {\otimes} \left(\left(y {\otimes} z\right) + \left(y {\otimes} w\right) + \left(y {\otimes} v\right)\right)\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 14
operands: 5
4Operationoperator: 22
operands: 6
5ExprTuple7, 8, 9
6ExprTuple16, 10
7Operationoperator: 22
operands: 11
8Operationoperator: 22
operands: 12
9Operationoperator: 22
operands: 13
10Operationoperator: 14
operands: 15
11ExprTuple16, 17
12ExprTuple16, 18
13ExprTuple16, 19
14Literal
15ExprTuple17, 18, 19
16Variable
17Operationoperator: 22
operands: 20
18Operationoperator: 22
operands: 21
19Operationoperator: 22
operands: 23
20ExprTuple26, 24
21ExprTuple26, 25
22Literal
23ExprTuple26, 27
24Variable
25Variable
26Variable
27Variable