| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , , ⊢ |
| : , : , : |
1 | reference | 4 | ⊢ |
2 | instantiation | 4, 5, 6 | , , , ⊢ |
| : , : , : |
3 | instantiation | 9, 7 | , , ⊢ |
| : , : , : |
4 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
5 | instantiation | 9, 8 | , , ⊢ |
| : , : , : |
6 | instantiation | 9, 10 | , , ⊢ |
| : , : , : |
7 | instantiation | 13, 11 | , , ⊢ |
| : , : |
8 | instantiation | 13, 12 | , , ⊢ |
| : , : |
9 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
10 | instantiation | 13, 14 | , , ⊢ |
| : , : |
11 | instantiation | 19, 20, 21, 22, 23, 24, 25, 15, 27, 28, 16 | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
12 | instantiation | 19, 20, 21, 22, 23, 24, 25, 17, 27, 28, 18 | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
13 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
14 | instantiation | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
15 | instantiation | 32 | ⊢ |
| : , : |
16 | assumption | | ⊢ |
17 | instantiation | 32 | ⊢ |
| : , : |
18 | assumption | | ⊢ |
19 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_disassociation |
20 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
21 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
22 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
23 | instantiation | 32 | ⊢ |
| : , : |
24 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
25 | instantiation | 30, 31 | ⊢ |
| : |
26 | instantiation | 32 | ⊢ |
| : , : |
27 | assumption | | ⊢ |
28 | assumption | | ⊢ |
29 | assumption | | ⊢ |
30 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
31 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
32 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |