tensor_product_barycentric_lagrange_interpolation
- pyapprox.surrogates.tensor_product_barycentric_lagrange_interpolation(grid_samples_1d, fun, samples, return_all=False)[source]
Use tensor-product Barycentric Lagrange interpolation to approximate a function.
- Parameters:
- grid_samples_1dlist (nvars)
List containing 1D grid points defining the tensor product grid The ith entry is a np.ndarray (nsamples_ii)
- funcallable
Function with the signature
fun(samples) -> np.ndarray (nx, nqoi)
where samples is np.ndarray (nvars, nx)
- samplesnp.ndarray (nvars, nsamples)
The samples at which to evaluate the basis functions
- Returns:
- interp_valsnp.ndarray (nsamples, nqoi)
Evaluations of the interpolant at the samples
- grid_samplesnp.ndarray (nvars, ngrid_samples)
if return_all: The samples used to consruct the basis functions where ngrid_samples = prod([len(s) for s in grid_samples_1d])