GaussianProcess
- class pyapprox.surrogates.GaussianProcess(kernel=None, *, alpha=1e-10, optimizer='fmin_l_bfgs_b', n_restarts_optimizer=0, normalize_y=False, copy_X_train=True, random_state=None)
Bases:
GaussianProcessRegressorA Gaussian process.
Methods Summary
__call__(samples[, return_std, return_cov, ...])A light weight wrapper of sklearn GaussianProcessRegressor.predict function.
condition_number()fit(train_samples, train_values)A light weight wrapper of sklearn GaussianProcessRegressor.fit function.
get_training_samples()map_from_canonical(canonical_samples)map_to_canonical(samples)num_training_samples()plot_1d(num_XX_test, bounds[, ax, ...])predict_random_realization(samples[, ...])Predict values of a random realization of the Gaussian process
set_variable_transformation(var_trans)Methods Documentation